Answer:
there should some picture to identify right?
pls edit your question and insert the picture..
Answer:
Normal stress = 66/62.84 = 1.05kips/in²
shearing stress = T/2 = 0.952/2 = 0.476 kips/in²
Explanation:
A steel pipe of 12-in. outer diameter d₂ =12in d₁= 12 -4in = 8in
4 -in.-thick
angle of 25°
Axial force P = 66 kip axial force
determine the normal and shearing stresses
Normal stress б = force/area = P/A
= 66/ (П* (d₂²-d₁²)/4
=66/ (3.142* (12²-8²)/4
= 66/62.84 = 1.05kips/in²
Tangential stress T = force* cos ∅/area = P/A
= 66* cos 25/ (П* (d₂²-d₁²)/4
=59.82/ (3.142* (12²-8²)/4
= 59.82/62.84 = 0.952kips/in²
shearing stress = tangential stress /2
= T/2 = 0.952/2 = 0.476 kips/in²
They are attractive
They don’t depend on charge
Answer:
Coefficient of friction = 0.5
Explanation:
Given:
Mass of box = 5 kg
Force applied = 20 N
Acceleration = 2 m/s²
Find:
Coefficient of friction
Computation:
Friction force = Mass x Acceleration.
Friction force = 5 x 2
Friction force = 10 N
Coefficient of friction = Friction force / Force applied
Coefficient of friction = 10 / 20
Coefficient of friction = 0.5
We have that the electric field at the center of the metal ball due only to the charges on the surface of the metal ball is

From the question we are told that
A solid metal ball of radius 1.5 cm
bearing a charge of -15 nC is located near a hollow plastic ball of radius 1.9 cm bearing
uniformly distributed charge of -7 nC
The distance between the centers of the balls is 9 cm
Generally the equation for the electric field is mathematically given as


For more information on this visit
brainly.com/question/21811998