Answer:
![f(x)=\sqrt[3]{x-4} , g(x)=6x^{2}\textrm{ or }f(x)=\sqrt[3]{x},g(x)=6x^{2} -4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx-4%7D%20%2C%20g%28x%29%3D6x%5E%7B2%7D%5Ctextrm%7B%20or%20%7Df%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%2Cg%28x%29%3D6x%5E%7B2%7D%20-4)
Step-by-step explanation:
Given:
The function, ![H(x)=\sqrt[3]{6x^{2}-4}](https://tex.z-dn.net/?f=H%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D)
Solution 1:
Let ![f(x)=\sqrt[3]{x}](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D)
If
, then,
![\sqrt[3]{g(x)} =\sqrt[3]{6x^{2}-4}\\g(x)=6x^{2}-4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bg%28x%29%7D%20%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5Cg%28x%29%3D6x%5E%7B2%7D-4)
Solution 2:
Let
. Then,
![f(g(x))=H(x)=\sqrt[3]{6x^{2}-4}\\\sqrt[3]{g(x)-4}=\sqrt[3]{6x^{2}-4} \\g(x)-4=6x^{2}-4\\g(x)=6x^{2}](https://tex.z-dn.net/?f=f%28g%28x%29%29%3DH%28x%29%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%5C%5C%5Csqrt%5B3%5D%7Bg%28x%29-4%7D%3D%5Csqrt%5B3%5D%7B6x%5E%7B2%7D-4%7D%20%5C%5Cg%28x%29-4%3D6x%5E%7B2%7D-4%5C%5Cg%28x%29%3D6x%5E%7B2%7D)
Similarly, there can be many solutions.
Lentgh * width = area so, 3.5*9 right?
Answer:
When rates are expressed as a quantity of 1, such as 2 feet per second or 5 miles per hour, they are called unit rates. If you have a multiple-unit rate such as 120 students for every 3 buses, and want to find the single-unit rate, write a ratio equal to the multiple-unit rate with 1 as the second term.
Hopefully this helps!
There are a total of 6 groups.
And each group contains at least 4 students.
So the minimum number of students is:
minimum = 6 * 4 = 24 students
Let us say that x represents the number of students,
hence:
<span>x ≥ 24</span>