Answer:From whom should a departing VFR aircraft request radar traffic information during ground operations? ... Answer: Sequencing to the primary Class C airport, traffic advisories, conflict resolution, and safety alerts.
Explanation:
Answer:
the speed of the bullet before striking the block is 302.3 m/s.
Explanation:
Given;
mass of the bullet, m₁ = 28.3 g = 0.0283 kg
mass of the wooden block, m₂ = 5004 g = 5.004 kg
initial velocity of the block, u₂ = 0
final velocity of the bullet-wood system, v = 1.7 m/s
let the initial velocity of the bullet before striking the block = u₁
Apply the principle of conservation of linear momentum to determine the initial velocity of the bullet.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
0.0283u₁ + 5.004 x 0 = 1.7(0.0283 + 5.004)
0.0283u₁ = 8.5549
u₁ = 8.5549 / 0.0283
u₁ = 302.3 m/s
Therefore, the speed of the bullet before striking the block is 302.3 m/s.
Answer:
(a). The frequency of this standing wave is 0.782 kHz.
(b). The frequency of the fundamental standing wave in the air is 1.563 kHz.
Explanation:
Given that,
Length of tube = 11.0 cm
(a). We need to calculate the frequency of this standing wave
Using formula of fundamental frequency

Put the value into the formula



(b). If the test tube is half filled with water
When the tube is half filled the effective length of the tube is halved
We need to calculate the frequency
Using formula of fundamental frequency of the fundamental standing wave in the air

Put the value into the formula



Hence, (a). The frequency of this standing wave is 0.782 kHz.
(b). The frequency of the fundamental standing wave in the air is 1.563 kHz.
Answer: In a pulley, the ideal mechanical advantage is equal to the number of rope segments pulling up on the object. The more rope segments that are supporting to do the lifting work, the less pressure that is needed for the job.
Explanation:
“a point representing the mean position of the matter in a body or system.”