Answer: option A. to decrease the solubility of the organic product in water
Explanation: sodium chloride solution act as a drying agent to remove water from an organic compound that is in solution. The salt water works to pull the water from the organic layer to the water layer,therby decreasing
Explanation:
a single bond such a (C-H) has one sigma bond whereas a double ( C=C) and triple (C=C) bond has one sigma bond with remaining being pi bond
Answer:
- a) 2N₂O(g) → 2N₂(g) + O₂(g)
Explanation:
Arrange the equations in the proper way for better understanding.
T<em>he reaction between nitrogen and oxygen is given below:</em>
<em />
- <em>2N₂(g) + O₂(g) → 2N₂O(g)</em>
<em />
<em>We therefore know that which of the following reactions can also occur?</em>
<em />
- <em>a) 2N₂O(g) → 2N₂(g) + O₂(g)</em>
- <em>b) N₂(g) + 2O₂(g) → 2NO₂(g)</em>
- <em>c) 2NO₂(g) → N₂(g) + 2O₂(g)</em>
- <em>d) None of the Above</em>
<h2>Solution</h2>
Notice that the first equation, a) 2N₂O(g) → 2N₂(g) + O₂(g), is the reverse of the original equation, 2N₂(g) + O₂(g) → 2N₂O(g).
The reactions in gaseous phase are reversible reactions that can be driven to one or other direction by modifying the conditions of temperature or pressure.
Thus, the equilibrium equation would be:
Which shows that both the forward and the reverse reactions occur.
Whether one or the other are favored would depend on the temperature and pressure: high temperatures would favor the reaction that consumes more heat (the endothermic reaction) and high pressures would favor the reaction that consumes more moles.
Thus, by knowing that one of the reactions can occur you can conclude that the reverse reaction can also occur.