Answer:
The percentage abundance of Eu isotopes are 52 % and 48 %
.
Explanation:
The formula for the calculation of the average atomic mass is:
Given that:
Since the element has only 2 isotopes, so the let the percentage of first be x and the second is 100 -x.
For first isotope,:
% = x %
Mass = 151.0 amu
For second isotope :
% = 100 - x
Mass = 153.0 amu
Given, Average Mass = 151.96 amu
Thus,
Solving for x, we get that:
x = 52 %
<u>Thus percentage abundance of Eu isotopes are 52 % and 48 %
.</u>
Number of Atoms in Gold for given mass can be calculated using following formula,
# of Moles = Number of Atoms / 6.022 × 10²³
Or,
Number of Atoms = Moles × 6.022 × 10²³ ------- (1)
Calculating Moles,
As,
Moles = Mass / M.mass
So,
Moles = 4.25 g / 196.96 g/mol
Moles = 0.0215
Putting value of mole in eq.1,
Number of Atoms = 0.0215 × 6.022 × 10²³
Number of Atoms = 1.299 × 10²²
Result:
4.25 g of Gold Nugget contains 1.299 × 10²² Atoms.
Answer:
The number of moles of O atom in
mol of
= 1.6
Explanation:
1 molecule of
contains 2 atoms of O
So,
molecules of
contains
atoms of O.
We know that 1 mol of an atom/molecule/ion represents
numbers of atoms/molecules/ions respectively.
So,
molecules of
is equal to 1 mol of
.
atoms of O is equal to 2 moles of O atom.
Hence, 1 mol of
contains 2 moles of O atom.
Therefore,
mol of
contains
moles of O atom or 1.6 moles of O atom.
<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
Hence, the correct answer is Option D.