Answer:
D
Explanation:
Double Displacement reaction
Both sides are balanced with option D
Answer:
19 g
Explanation:
Data Given:
Sodium Chloride (table salt) = 50 g
Amount of sodium (Na) = ?
Solution:
Molecular weight calculation:
NaCl = 23 + 35.5
NaCl = 58.5 g/mol
Mass contributed by Sodium = 23 g
calculate the mole percent composition of sodium (Na) in sodium Chloride.
Since the percentage of compound is 100
So,
Percent of sodium (Na) = 23 / 58.5 x 100
Percent of sodium (Na) = 39.3 %
It means that for ever gram of sodium chloride there is 0.393 g of Na is present.
So,
for the 50 grams of table salt (NaCl) the mass of Na will be
mass of sodium (Na) = 0.393 x 50 g
mass of sodium (Na) = 19 g
Geology is the study of the Earth, the materials of which it is made, the structure of those materials, and the processes acting upon them.
526 L O2 x 1 mol O2 / 22.4 L = 23.5 mol O2
Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.