Answer:
E. Q < K and reaction shifts right
Explanation:
Step 1: Write the balanced equation
A(s) + 3 B(l) ⇄ 2(aq) + D(aq)
Step 2: Calculate the reaction quotient (Q)
The reaction quotient, as the equilibrium constant (K), only includes aqueous and gaseous species.
Q = [C]² × [D]
Q = 0.64² × 0.38
Q = 0.15
Step 3: Compare Q with K and determine in which direction will shift the reaction
Since Q < K, the reaction will shift to the right to attain the equilibrium.
When y equals 5, x is 104.3
When y equals 3 then x is 108.3
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

<h3><u>If y equals 5 what is x ?</u></h3>
Substitute y = 5 in given expression
5 = 57.15 - 0.5(x)
5 = 57.15 - 0.5x
0.5x = 57.15 - 5
0.5x = 52.15
Divide both sides by 0.5
x = 104.3
Thus when y equals 5, x is 104.3
<h3><u>If y = 3 what is x ?</u></h3>
Substitute y = 3 in given expression
3 = 57.15 - 0.5(x)
3 = 57.15 - 0.5x
0.5x = 57.15 - 3
0.5x = 54.15
Divide both sides by 0.5
x = 108.3
Thus when y equals 3 then x is 108.3
All three of them i know i already did that
Answer:
C) 979 dg
Explanation:
1 Decagram = 0.01 Kilogram, and 1 kilogram = 100 Decagram.
Hope this helps :)
Answer:
V₂ = 1.41 L
Explanation:
Given data:
Initial temperature = 35°C (35 +273.15 K = 308.15 K)
Initial volume = 1.5 L
Final temperature = 17°C (17+273.15 K = 290.15 K)
Final volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 1.5 L × 290.15 K / 308.15 k
V₂ = 435.23 L.K / 308.15 k
V₂ = 1.41 L