We need to know the relationship between atmospheric pressure and the density of gas particles in an area of increasing pressure.
The relationship is: As air pressure in an area increases, the density of the gas particles in that area increases.
For any gaseous substance, density of gas is directly proportional to pressure of gas.
This can be explained from idial gas edquation:
PV=nRT
PV=
RT [where, w= mass of substance, M=molar mass of substance]
PM=
RT
PM=dRT [where, d=density of thesubstance]
So, for a particular gaseous substance (whose molar mass is known), at particular temperature, pressure is directly related to density of gaseous substance.
Therefore, as air pressure in an area increases, the density of the gas particles in that area increases.
Answer:
★ Molecular geometry is described by VSEPR theory, which basically states that electron pairs around a central atom will repel each other, and get as far apart as possible, in three dimensions.
Explanation:
Hope you have a great day :)
Answer: I HOPE THIS HELPS, HAVE A GREAT EARLY HALLOWEEN
Explanation:
PubChem CID: 1084
Molecular Formula: S2O3(2−) or O3S2-2
Synonyms: Thiosulphate THIOSULFATE ION sulfurothioate UNII-LLT6XV39PY Thiosulfate (S2O32-) More...
Molecular Weight: 112.13 g/mol
Answer:
I don't really get the options but it favoures the reactant side.
Explanation:
Increasing pressure favours the side with fewer moles of gas while decreasing pressure favours the side with the more moles of gas. E.g
If there is 0 moles of gas particles in the reactant side and 1 mole of gas particle in the product side, increasing pressure favours the reactants while decreasing pressure favours the product side.
With the explanations I have made, I hope the question is now clear to you.
<span>The molar mass of the compound is 122 g. </span>