Answer:
= -0.303 KW
Explanation:
This is the case of unsteady flow process because properties are changing with time.
From first law of thermodynamics for unsteady flow process

Given that tank is insulated so
and no mass is leaving so

Mass conservation 
is the initial and final mass in the system respectively.
Initially tank is evacuated so 
We know that for air
,

So now putting values

= -0.303 KW
Answer:
t = 2244.3 sec
Explanation:
calculate the thermal diffusivity


Temperature at 28 mm distance after t time = = 50 degree C
we know that

![\frac{ 50 -25}{300-25} = erf [\frac{28\times 10^{-3}}{2\sqrt{1.34\times 10^{-5}\times t}}]](https://tex.z-dn.net/?f=%5Cfrac%7B%2050%20-25%7D%7B300-25%7D%20%3D%20erf%20%5B%5Cfrac%7B28%5Ctimes%2010%5E%7B-3%7D%7D%7B2%5Csqrt%7B1.34%5Ctimes%2010%5E%7B-5%7D%5Ctimes%20t%7D%7D%5D)

from gaussian error function table , similarity variable w calculated as
erf w = 0.909
it is lie between erf w = 0.9008 and erf w = 0.11246 so by interpolation we have
w = 0.08073
![erf 0.08073 = erf[\frac{3.8245}{\sqrt{t}}]](https://tex.z-dn.net/?f=erf%200.08073%20%3D%20erf%5B%5Cfrac%7B3.8245%7D%7B%5Csqrt%7Bt%7D%7D%5D)

solving fot t we get
t = 2244.3 sec
Answer:
Babies come from heaven didn't you know?
Answer: 3/2mg
Explanation:
Express the moment equation about point B
MB = (M K)B
-mg cosθ (L/6) = m[α(L/6)](L/6) – (1/12mL^2 )α
α = 3g/2L cosθ
express the force equation along n and t axes.
Ft = m (aG)t
mg cosθ – Bt = m [(3g/2L cos) (L/6)]
Bt = ¾ mg cosθ
Fn = m (aG)n
Bn -mgsinθ = m[ω^2 (L/6)]
Bn =1/6 mω^2 L + mgsinθ
Calculate the angular velocity of the rod
ω = √(3g/L sinθ)
when θ = 90°, calculate the values of Bt and Bn
Bt =3/4 mg cos90°
= 0
Bn =1/6m (3g/L)(L) + mg sin (9o°)
= 3/2mg
Hence, the reactive force at A is,
FA = √(02 +(3/2mg)^2
= 3/2 mg
The magnitude of the reactive force exerted on it by pin B when θ = 90° is 3/2mg