1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IceJOKER [234]
2 years ago
5

Consider the function f(x)=/x/

Engineering
1 answer:
Pepsi [2]2 years ago
8 0

Answer: Describe three conditions for when a function does not have a derivative. ... A function f(x) is said to be differentiable at a if f^{\prime}(a) exists.

Explanation:

You might be interested in
Question: 10 of 15
Anvisha [2.4K]

Answer:

Leg length

Explanation:

The distances from the root to the edges of the legs (toes) and the height of the crown are basic measurements.

3 0
3 years ago
A police officer in a patrol car parked in a 70 km/h speed zone observes a passing automobile traveling at a slow, constant spee
Ludmilka [50]

Answer:

S = 0.5 km

velocity of motorist = 42.857 km/h

Explanation:

given data

speed  = 70 km/h

accelerates uniformly = 90 km/h

time = 8 s

overtakes motorist =  42 s

solution

we know  initial velocity u1 of police = 0

final velocity u2 = 90 km/h = 25 mps

we apply here equation of motion

u2 = u1 + at  

so acceleration a will be

a = \frac{25-0}{8}

a = 3.125  m/s²

so

distance will be

S1 = 0.5 × a × t²

S1 = 100 m = 0.1 km

and

S2 = u2 ×  t

S2 = 25  × 16

S2 = 400 m = 0.4 km  

so total distance travel by police

S = S1 + S2

S = 0.1 + 0.4

S = 0.5 km

and

when motorist travel with  uniform velocity

than total time = 42 s

so velocity of motorist will be

velocity of motorist = \frac{S}{t}

velocity of motorist =  \frac{500}{42}  

velocity of motorist = 42.857 km/h

3 0
3 years ago
Plz solve the problem
julsineya [31]
I attached a photo that explains and gives the answer to your questions. Had to add a border because the whole picture didn’t fit.

6 0
3 years ago
There are two types of cellular phones, handheld phones (H) that you carry and mobile phones (M) that are mounted in vehicles. P
nexus9112 [7]

Answer:

A) P(W) = 0.5

B) P(MF) = 0.3

C) P(H) = 0.6

Explanation:

We are told that there are two types of cellular phones which are handheld phones (H) that you carry and mobile phones (M) that are mounted in vehicles.

Also, Phone calls can be classified by the traveling speed of the user as fast (F) or slow (W).

Thus, the sample space is combination of types and classification we are given and it is written as;

S = {HF, HW, MF, MW}

A) Now, phones can either be fast(F) or slow(W). Thus, we can write;

P(F) + P(W) = 1

We are given P(F) = 0.5

Thus;

0.5 + P(W) = 1

P(W) = 1 - 0.5

P(W) = 0.5

B) Now, from the problem statement, a phone call can either be made with a handheld(H) or mobile(M). Thus the sample space partition is {H, M} and we can express as;

P(H ∩ F) + P(M ∩ F) = P(F)

We are given P[F] = 0.5 and P[HF] = 0.2.

P(H ∩ F) is same as P[HF]

Also, P(M ∩ F) is same as P(MF)

Thus;

0.2 + P(MF) = 0.5

P(MF) = 0.5 - 0.2

P(MF) = 0.3

C) Similarly, mobile Phone calls can either be fast or slow. It means the sample space partition is {F, W}

Thus;

P(M) = P(MW) + P(MF)

P(M) = 0.1 + 0.3

P(M) = 0.4

Now, since cellular phones can either be handheld(H) or Mobile(M), then we can say;

P(H) + P(M) = 1

P(H) + 0.4 = 1

P(H) = 1 - 0.4

P(H) = 0.6

5 0
2 years ago
A smooth sphere with a diameter of 6 inches and a density of 493 lbm/ft^3 falls at terminal speed through sea water (S.G.=1.0027
Pachacha [2.7K]

Given:

diameter of sphere, d = 6 inches

radius of sphere, r = \frac{d}{2} = 3 inches

density,  \rho} = 493 lbm/ ft^{3}

S.G = 1.0027

g = 9.8 m/ m^{2} = 386.22 inch/ s^{2}

Solution:

Using the formula for terminal velocity,

v_{T} = \sqrt{\frac{2V\rho  g}{A \rho C_{d}}}              (1)

(Since, m = V\times \rho)

where,

V = volume of sphere

C_{d} = drag coefficient

Now,

Surface area of sphere, A = 4\pi r^{2}

Volume of sphere, V = \frac{4}{3} \pi r^{3}

Using the above formulae in eqn (1):

v_{T} = \sqrt{\frac{2\times \frac{4}{3} \pir^{3}\rho  g}{4\pi r^{2} \rho C_{d}}}

v_{T} = \sqrt{\frac{2gr}{3C_{d}}}  

v_{T} = \sqrt{\frac{2\times 386.22\times 3}{3C_{d}}}

Therefore, terminal velcity is given by:

v_{T} = \frac{27.79}{\sqrt{C_d}} inch/sec

3 0
3 years ago
Other questions:
  • Nc3
    12·1 answer
  • Consider a simple ideal Rankine cycle and an ideal regenerative Rankine cycle with one open feedwater heater. The two cycles are
    15·1 answer
  • Yield and tensile strengths and modulus of elasticity . with increasing temperature. (increase/decrease/independent)
    11·1 answer
  • A thermoelectric refrigerator is powered by a 16-V power supply that draws 2.9 A of current. If the refrigerator cools down 3.1
    11·1 answer
  • NASA SPACE SHUTTLE QUESTION:
    14·1 answer
  • A motor cycle is moving up an incline of 1 in 30 at a speed of 80 km/h,and then suddenly the engine shuts down.The tractive resi
    11·1 answer
  • WHAT IS MEANT BY BJT AND FUNCTION OF BJT
    8·1 answer
  • Market research is a good place to start the design process and usually involves asking questions about consumers.
    5·1 answer
  • If an internally piloted DCV does not shift, you should use a gauge to _____. A.check the pilot line pressure b. check the inlet
    15·1 answer
  • A book sitting on a shelf is an example of ____________.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!