Answer:
Gravitational potential energy is energy an object possesses because of its position in a gravitational field. Since the force required to lift it is equal to its weight, it follows that the gravitational potential energy is equal to its weight times the height to which it is lifted.
Answer:
Wilhelm Conrad Roentgen (1845-1923)
Antoine Henri Becquerel (1852-1908)
Pierre (1859-1906) and Marie (1867-1934) Curie
Explanation:
Wilhelm Conrad Roentgen (1845-1923)
Contribution: Discovery of x-rays in 1901.
Antoine Henri Becquerel (1852-1908)
Contribution: He discovered that radioactivity is the separation of x-rays and document and the difference between two.
Pierre (1859-1906) and Marie (1867-1934) Curie
Contribution: She discovered Polonium and Radium in1911
Answer: The radial acceleration of a point on the rim in two ways is 13.20 m/s^2
Explanation: Please see the attachments below
Answer:
Explanation:
one end of tank will be circular in shape . Area of circle A
= π r² , r is radius of the circle
= 3.14 x 3²
A = 28.26 ft³
To calculate force on the circular area , we first find pressure at the center of the circle which is at depth equal to r
pressure at the center = h d g ' here h = depth = r , d = density of milk
pressure = 3 x 64.6 x 32 poundal / ft²
= 6201.6 poundal / ft²
total force on circular face = pressure at the center x area of circle
= 6201.6 x 28.26
= 175257.21 poundal .
The new period is D) √2 T

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy and Period of Simple Pendulum formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>


where:
<em>T = period of simple pendulum ( s )</em>
<em>L = length of pendulum ( m )</em>
<em>g = gravitational acceleration ( m/s² )</em>
Let us now tackle the problem!

<u>Given:</u>
initial length of pendulum = L₁ = L
initial mass = M₁ = M
final length of pendulum = L₂ = 2L
final mass = M₂ = 2M
initial period = T₁ = T
<u>Asked:</u>
final period = T₂ = ?
<u>Solution:</u>






<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity