Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Change in market price is m<span>ovement along the demand curve. </span>
That's false.
The definition of momentum is (mass) x (speed), so they must be multiplied.
"20,000 kg-m/s" has the correct units resulting from multiplication, but the number could only be the result of division.
The decibel system of sound intensity operates by a logarithmic scale, meaning that sound intensity increases exponentially in relation to the decibel rating.
For decibels, the equation between intensity and the dB equivalent is:
dB = 10log(i),
where “i” is the intensity of the sound. The ten in front of the log means that an increase in ten dB results in a tenfold increase in sound intensity; for example, a 30 dB sound is ten times softer than a 40 dB sound.
In this case, a sound with a dB of 80 would be 1000 times more intense than a 50 dB sound, so the decibel rating of B is 80.
Hope this helps!
Less than because a mile is 1600 meters
Answer:
B) waves speed up
C) waves bend away from the normal
Explanation:
The index of refraction of a material is the ratio between the speed of light in a vacuum and the speed of light in that medium:
where
c is the speed of light in a vacuum
v is the speed of light in the medium
We can re-arrange this equation as:
So from this we already see that if the index of refraction is lower, the speed of light in the medium will be higher, so one correct option is
B) waves speed up
Moreover, when light enters a medium bends according to Snell's Law:
where
are the index of refraction of the 1st and 2nd medium
are the angles made by the incident ray and refracted ray with the normal to the interface
We can rewrite the equation as
So we see that if the index of refraction of the second medium is lower (), then the ratio is larger than 1, so the angle of refraction is larger than the angle of incidence:
This means that the wave will bend away from the normal. So the other correct option is
C) waves bend away from the normal