When do you gotta turn it in?
Answer:
We know that potential energy of a body;
= mass(m)× gravitational acceleration(g) × height(h)
Lets find out the mass of the body
P.E. = mgh
=> 6500J = mass × 9.8m/s^2 × 12m
=>6500J = mass × ( 9.8 × 12 ) × ( m/s^2 × m)
=> 6500 Nm = m × 117.6 × m^2 / s^2
=> 6500/117.6 Ns^2/m = mass [°.° Ns^2/m = kg]
=> 55.272 Kg = mass
Therefore the mass of the body = 55.272 kg ~ <em>6</em><em>0</em><em> </em><em>k</em><em>g</em><em> </em>(Ans)
Hope it helps you
Answer: 
Explanation:
Given
Length of the race track 
the radius of curvature of the track 
time taken to run on track is 
Speed of runner is

Centripetal acceleration is

Answer:
θ = 1.591 10⁻² rad
Explanation:
For this exercise we must suppose a criterion when two light sources are considered separated, we use the most common criterion the Rayleigh criterion that establishes that two light sources are separated census the central maximum of one of them coincides with the first minimum of the other source
Let's write the diffraction equation for a slit
a sin θ = m λ
The first minimum occurs for m = 1, also field in these we experience the angles are very small, we can approximate the sin θ = θ
θ = λ / a
In our case, the pupil is circular, so the system must be solved in polar coordinates, so a numerical constant is introduced.
θ = 1.22 λ / D
Where D is the diameter of the pupil
Let's apply this equation to our case
θ = 1.22 600 10⁻⁹ / 0.460 10⁻²
θ = 1.591 10⁻² rad
This is the angle separation to solve the two light sources