REALISM shows things as they REALLY look.
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Given that,
Central maximum = 1 cm
Distance from the window shade to the wall =4 m
We know that,
The visible range of the sun light is 400 nm to 700 nm.
(a). We need to calculate the average wavelength
Using formula of average wavelength

Put the value into the formula


(b). We need to calculate the diameter of the pinhole
Using formula for diameter


Put the value into the formula


Hence, (a). The average wavelength 550 nm.
(b). The diameter of the pinhole is 0.537 mm.
<h3><em>Frictional forces are exerting force against the basketball, causing it to stop.</em></h3>
<h3>If USATestPrep, I think answer choice
B is correct </h3>
<u><em>Tell me if i'm wrong </em></u>
Answer:
the magnitude of the vector is 44,40 units
Explanation:
Using the Pythagoras theorem
