Answer:
maybe if you posted a picture of the story i can help you
Answer:
(a) To draw water from a well we have to pull at the rope.
(b) A charged body attracts an uncharged body towards it.
(c) To move a loaded trolley we have to pull it.
(d) The north pole of a magnet repels the north pole of another magnet.
Explanation:
Just trust me
The specific heat of the substance will be 0.129 J/g°C.
<h3>What is specific heat capacity?</h3>
The amount of heat required to increase a substance's temperature by one degree Celsius is known as specific heat capacity.
Similarly, heat capacity is the relationship between the amount of energy delivered to a substance and the increase in temperature that results.
The given data in the problem is;
Q is the amount of energy necessary to raise the temperature = 3,000.0 j
M is the mass= 0.465 kg.
Δt is the time it takes to raise the temperature.=50°c
s stands for specific heat capacity=?
Mathematically specific heat capacity is given by;

Hence the specific heat of the substance will be 0.129 J/g°C.
To learn more about the specific heat capacity refer to the link brainly.com/question/2530523
Answer:

Explanation:
The time taken by the light to travel a given distance is defined as:

Here c is obviously the speed of light. Now we convert the average distance form Venus to Earth to meters:

Finally, we calculate the minutes taken by the light to travel from Venus to Earth:

Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.