Answer : The final concentration of
is, 2.9 M
Explanation :
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 3.5 min
a = initial concentration of the reactant = 3.0 M
a - x = concentration left after decay process = ?
Now put all the given values in above equation, we get


Thus, the final concentration of
is, 2.9 M
Answer
2-methyl-2-pentene
Explanation:
1. Identify the group that takes precedence in this case alkene hence this molecule is an alkene with a methyl group side chain.
2.Find the longest carbon chain where the functional group(alkene group in this case) has the lowest Carbon number
3.What are the side groups? One side group can be seen at carbon 2 this group is methyl
4. Naming, number separated by "," and number from letters by "-" so the compound should be
2-methyl-2-pentene
The acid having the yellow anion is a weak acid.
The weak acid is the acid that does not dissociate completely in solution. Strong acids are known to dissociate completely in solution. Hence, their cations and anions do not occur together in solution.
Weak acids acids do not dissociate in solution hence, we can still spot the cations connected to their anions in solution. Hence, the acid having the yellow anion is a weak acid.
Learn more: brainly.com/question/8743052
I can't actually answer this one if the empirical formula is not given. Luckily, I've found a similar problem from another website. The problem is shown in the picture attached. It shows that the empirical formula is CH₂O. Let's calculate the molar mass of the empirical formula.
Molar mass of E.F = 12 + 2(1) + 16 = 30 g/mol
Then, let's divide this to the molar mass of the molecular formula.
Molar mass of M.F/Molar mass of E.F = 180/30 = 6
Therefore, let's multiply 6 to each subscript in the empirical formula to determine the actual molecular formula.
<em>Actual molecular formula = C₆H₁₂O₆</em>