"The uncertainty<span> in </span>velocity<span> is Δv=1.05⋅105m/s . According to the Heisenberg </span>Uncertainty<span> Principle, you cannot measure simultaneously with great precision both the momentum and the position of a particle. m - the mass of an electron - 9.10938⋅10−31kg."
-socratic.com</span>
Answer:
10.5 g
Explanation:
Step 1: Given data
- Molar concentration of the solution (C): 0.243 M
- Volume of solution (V): 0.580 L
Step 2: Calculate the moles of solute (n)
Molarity is equal to the moles of solute divided by the liters of solution.
M = n/V
n = M × V
n = 0.243 mol/L × 0.580 L = 0.141 mol
Step 3: Calculate the mass corresponding to 0.141 moles of KCl
The molar mass of KCl is 74.55 g/mol.
0.141 mol × 74.55 g/mol = 10.5 g
Here, this is what I have. :)
Answer:
Neutron does not contain any charge because the charge of the quarks that made up the neutron balances each other out.
Hope it helps.
Answer:
120g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Sn + 2HF —> SnF2 + H2
Next, we shall determine the number of mole of HF needed to react with 3 moles of Sn.
From the balanced equation above, 1 mole of Sn reacted with 2 moles of HF.
Therefore, 3 moles of Sn will react with = 3 x 2 = 6 moles of HF.
Finally, we shall convert 6moles of HF to grams
This is illustrated below:
Number of mole of HF = 6moles
Molar Mass of HF = 1 + 19 = 20g/mol
Mass of HF =..?
Mass = number of mole x molar Mass
Mass of HF = 6 x 20
Mass of HF = 120g
Therefore, 120g of HF is needed to react with 3 moles of Sn