Answer:
The new volume will be 42, 7 L.
Explanation:
We use the gas formula, which results from the combination of the Boyle, Charles and Gay-Lussac laws. According to which at a constant mass, temperature, pressure and volume vary, keeping constant PV / T. The conditions STP are: 1 atm of pressure and 273 K of temperature.
P1xV1/T1 =P2xV2/T2
1 atmx 22,4 L/273K = 0,5atmx V2/260K
V2=((1 atmx 22,4 L/273K )x 260K)/0,5 atm= 42, 67L
answer: its 7290 joules.
explanations: the first procedure is to convert 1 pound to kilogram. 1 kg = 2.205 hence given 100 lb so we cross multiply. 1 kg * 100 = 2.205 * x
hence x= 45 kg. let's convert 1 mile per hour = 0.45 metre per second we cross multiply by 40 mile per hour. x= 40 * 0.45= 18 m/s.
KE= 1/2 * 45 * (18)^2
= 1/2 * 45 * 14580
= 7290joules
Density=mass/volume
Mass = 0.0500g
Volume = 6.40mL
0.0500g/6.40mL = 0.0078g/mL
Answer:
17.6
Explanation:
Answer is explained above
Consider the isomerization of butane with equilibrium constant is 2.5 .The system is originally at equilibrium with :
[butane]=1.0 M , [isobutane]=2.5 M
If 0.50 mol/L of butane is added to the original equilibrium mixture and the system shifts to a new equilibrium position, what is the equilibrium concentration of each gas?
Answer:
The equilibrium concentration of each gas:
[Butane] = 1.14 M
[isobutane] = 2.86 M
Explanation:
Butane ⇄ Isobutane
At equilibrium
1.0 M 2.5 M
After addition of 0.50 M of butane:
(1.0 + 0.50) M -
After equilibrium reestablishes:
(1.50-x)M (2.5+x)
The equilibrium expression will wriiten as:
x = 0.36 M
The equilibrium concentration of each gas:
[Butane]= (1.50-x) = 1.50 M - 0.36M = 1.14 M
[isobutane]= (2.5+x) = 2.50 M + 0.36 M = 2.86 M