dont know what the web looks like but mushrooms are decomposers
The enthalpy change for melting ice is called the entlaphy of fusion. Its value is 6.02 kj/mol. This means for every mole of ice we melt we must apply 6.02 kj of heat. We can calculate the heat needed with the following equation:
Q = N x ΔH
where:
Q = heat
N = moles
ΔH = enthalpy
In this problem we would like to calculate the heat needed to melt 35 grams of ice at 0 °C. This problem can be broken into three steps:
1. Calculate moles of water
2. multiply by the enthalpy of fusion
3. Convert kJ to J.
Step 1 : Calculate moles of water
![[ 75g ] x (\frac{1 mol}{18.02g} ) =](https://tex.z-dn.net/?f=%5B%2075g%20%5D%20x%20%28%5Cfrac%7B1%20mol%7D%7B18.02g%7D%20%29%20%3D)
Step 2 : Multiply by enthalpy of fusion
Q = N × ΔH = <em> [ Step 1 Answer ]</em> × 6.02 =
Step 3 : Convert kJ to J
![[ Step 2 Answer ] x (\frac{1000j}{1kJ} ) =](https://tex.z-dn.net/?f=%5B%20Step%202%20Answer%20%5D%20x%20%28%5Cfrac%7B1000j%7D%7B1kJ%7D%20%29%20%3D)
Finally rounding to 2 sig figs (since 34°C has two sig figs) we get
Q Would Equal ____
Answer: The correct answer is option B.
Explanation:
Average kinetic energy of the gas molecule is given by relation:

= Avogadro Number
T = Temperature of the gas in Kelvins.
R = Universal gas constant

With increase in temperature the kinetic energy of the gas molecule increases and vice-versa.
So, according to the question the explanation for a drop in temperature of the gas is decrease in average kinetic energy of the gas molecules.
Hence, the correct answer is option B.
B) nuclear fission, mark me brainliest if that helps
A molecule with a triple covalent bond is N2
Na would be the best conductor of electricity