Answer:
A single molecule of water has been isolated for the first time by trapping it in a fullerene cage. Water molecules are never found alone — they are always hydrogen-bonded to other molecules of water or polar compounds.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
While making small volumes of pure water in a lab is possible, it's not practical to “make” large volumes of water by mixing hydrogen and oxygen together. The reaction is expensive, releases lots of energy, and can cause really massive explosions.
A water molecule consists of three atoms; an oxygen atom and two hydrogen atoms, which are bond together like little magnets. The atoms consist of matter that has a nucleus in the centre. The difference between atoms is expressed by atomic numbers.
Explanation:
Answer:
The mass of nickel is 48μg
Explanation:
Parts per billion is a way to describe small concentrations and is defined as the ratio between μg of solute and kg of solvent.
If a solution of nickel in propanol is 20ppb, contains 20μg of nickel in 1 kg of propanol.
Thus, a sample of 2.4kg of propanol will contain:
2.4kg × (20μg nickel / 1kg) = 48μg nickel
<h3>The mass of nickel is 48μg</h3>
What are the following reactions?
Answer:
<h2>
32°F
/0°C
</h2>
Explanation:
At what temperature does the melting point occur?
32°F
/0°C
(32°F − 32) × 5/9 = 0°C
At temperatures above 32°F (0°C), pure water ice melts and changes state from a solid to a liquid (water); 32°F (0°C) is the melting point. For most substances, the melting and freezing points are about the same temperature.
Is Melting Point affected by temperature?
Melting point, the temperature at which the solid and liquid forms of a pure substance can exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change.