You should take note that the question is about stability. A compound is stable if it does not easily react with other elements. Hence, its reactivity must be low. As you move down the group, reactivity decreases. So, the halide at the very bottom is the least reactive. It would then be logical that the most stable conjugate base is I⁻ and the least stable conjugate base is the most reactive which is F⁻.
Answer:
K = 0.5
Explanation:
Based on the reaction:
PCl₃ + Cl₂ ⇄ PCl₅
The equilibrium constant, K, is defined as:
K = P PCl₅ / P PCl₃ * P Cl₂
<em>Where P represent the pressure at the equilibrium for each one of the gases involved in the equilibrium.</em>
<em />
As:
P PCl₅ = 1.0atm
P PCl₃ = 1.0atm
P Cl₂ = 2.0atm
K = 1.0atm / 1.0atm * 2.0atm
<h3>K = 0.5</h3>
Answer:
pH ≅ 4.80
Explanation:
Given that:
the volume of HN₃ = 25 mL = 0.025 L
Molarity of HN₃ = 0.150 M
number of moles of HN₃ = 0.025 × 0.150
number of moles of HN₃ = 0.00375 mol
Molarity of NaOH = 0.150 M
the volume of NaOH = 13.3 mL = 0.0133
number of moles of NaOH = 0.0133× 0.150
number of moles of NaOH = 0.001995 mol
The chemical equation for the reaction of this process can be written as:

1 mole of hydrazoic acid react with 1 mole of hydroxide to give nitride ion and water
thus the new number of moles of HN₃ = 0.00375 - 0.001995 = 0.001755 mol
Total volume used in the reaction = 0.025 + 0.0133 = 0.0383 L
Concentration of
=
= 0.0458 M
Concentration of
=
= 0.0521 M
GIven that :
Ka = 
Thus; it's pKa = 4.72




pH ≅ 4.80
1 is B (Just remember to have the same number of atoms on both sides)
2 is B (A precipitate is a solid forming from 2 liquids)