1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
d1i1m1o1n [39]
3 years ago
5

Which mathematical property is shown here

Mathematics
1 answer:
VashaNatasha [74]3 years ago
4 0
Identity property of multiplication is shown
You might be interested in
15(cos 206° + i sin 206°) answer in a+bi form
lyudmila [28]
The answer is -13.48 – 6.58í.

I mean bases on the question this is the right answer. If not, can you clarify.
8 0
3 years ago
A kayak rental pavilion charges $15.00 per hour and $2.50 for a brief lesson on kayak safety. The total cost y to rent the kayak
maxonik [38]

Answer:

Step-by-step explanation:

7 0
3 years ago
This is Hard for me!
max2010maxim [7]
DIFFERENTIATION
6+f(28+b(4)=6+112f+4bf
b=6+112f/-4f
b=1*6^0+1*112f^0/1*-4f^0
b=1+1/1
b=2
8 0
3 years ago
Alex, Bruno, and Charles each add the lengths of two sides of the same triangle correctly. They get 27 cm, 35 cm, 32 cm, respect
Vera_Pavlovna [14]

Answer:

47 cm.

Step-by-step explanation:

Alex, Bruno, and Charles each add the lengths of two sides of the same triangle correctly.

They get  27 cm, 35 cm, and 32 cm, respectively. Find the perimeter of the triangle, in cm

find:

Find the perimeter of the triangle, in cm. What is the most efficient strategy you can find to solve this problem?

<u>solution:</u>

27, 35, and 32 are each the sum of a different pair of sides of the triangle

Then 27 + 35 + 32 is the sum of all three sides, each counted twice.

Thus, 27 + 35 + 32 = 94 is twice  the perimeter

therefore,

the perimeter of the triangle is 94/2 = 47 cm.

6 0
3 years ago
Read 2 more answers
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • Find m∠ZWV.<br><br> A. 5°<br> B. 23°<br> C. 35°<br> D. 50°
    5·1 answer
  • (-8)+(-19)-4 find the value
    5·1 answer
  • Joey Chestnut can eat 3 hotdogs in 25 seconds. How many can he eat in a minute? How many can he eat in 10 minutes?
    12·1 answer
  • Fatima evaluated the expression StartFraction 4 m Superscript negative 3 Baseline n Superscript negative 2 Baseline Over m Super
    15·2 answers
  • Solve each equation by taking square roots<br> 9v^2=25
    15·1 answer
  • Ratios<br> Express each ratio as a fraction in the simplest for<br> MI<br> 1) 18 pounds to 22 pounds
    13·2 answers
  • Evaluate h(x) = -2x + 9 when x = -2,0, and 5.
    6·1 answer
  • What partial products can be used to find the product 3x219
    8·1 answer
  • At a camp with 300 campers and 15 counselors, what is the camper-counselor ratio?​
    11·1 answer
  • The quotient of a number p and 38
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!