1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
13

PLEASE HELP ME GUYS OR I WONT PASS this calculus!!!!​

Mathematics
1 answer:
KonstantinChe [14]3 years ago
5 0

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
Which of the following is the correct graph of the solution to the inequality-18&gt;-5x+2&gt;-48
makvit [3.9K]

Answer:

Step-by-step explanation:

we have

18 > -5x+2 > -48

This is a compound inequality

Remember that

A compound inequality i can divide in a system of two inequalities

so

18 > -5x+2 -----> inequality A

-5x+2 > -48 ---> inequality B

step 1

Solve the inequality A

18 > -5x+2

Multiply by -1 both sides

-18< 5x-2

-18+2< 5x

-16< 5x

Divide by 5 both sides

-3.2< x

Rewrite

x > -3.2

The solution of the inequality A is the interval ----> (-3.2,∞)

step 2

Solve the inequality B

-5x+2 > -48

Multiply by -1 both sides

5x-2 < 48

5x < 48+2

5x < 50

Divide by 5 both sides

x < 10

The solution of the inequality B is the interval ----> (-∞, 10)

step 3

Find the solution of the compound inequality

(-3.2,∞) ∩ (-∞, 10)=(-3.2,10)

All real numbers greater than -3.2 and less than 10

The graph in the attached figure

7 0
3 years ago
IRGENT PLEASE HELP ASAP!!
Gnom [1K]
Try the answer c 11.7 g
3 0
3 years ago
Help quickly please!! :(
max2010maxim [7]
I believe the answer is x=8. I believe i could be wrong so please correct me if so, Hope this helps :)
6 0
3 years ago
ANSWER ASAP PLEASE!OTHER ANSWER OPTION IS 25.
Kipish [7]
I am thinking it might be 21 but i am not sure
6 0
4 years ago
All equilateral triangles are ________ triangles. <br><br> 10pts this on is easy
dem82 [27]

Answer:

isosceles

Step-by-step explanation:

5 0
4 years ago
Other questions:
  • Sin(π)+4cos(π) = x - cos(π/2)
    10·1 answer
  • help help help help help help help help help help help help help help help help help help help help help help help help help hel
    15·2 answers
  • The total was 110.25$,each ticket is 12.25$, how many tickets did she buy?
    15·2 answers
  • Can someone please help me i don’t understand it
    6·1 answer
  • 35 POINTS ANSWER FAST PLZ!!!!!!!!!!!!!!!
    14·2 answers
  • Which triangle congruence postulate can be used to prove that FEH=HGF?
    7·1 answer
  • Which equation is equivalent to StartRoot x EndRoot + 11 = 15?
    7·1 answer
  • This question has just been watching so please help!
    12·1 answer
  • A boat leaves Astoria and travels upstream on the Columbia river for 5 hours. The return trip only takes 3.6 hours because the b
    7·1 answer
  • During the 7 minutes previous to landing, an airplane decreased in elevation by −3,192 feet. Determine the mean elevation change
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!