1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
13

PLEASE HELP ME GUYS OR I WONT PASS this calculus!!!!​

Mathematics
1 answer:
KonstantinChe [14]3 years ago
5 0

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
The parametric curve described by the equations x=\cos(t),\;\;y=\sin(t)\cos(t) has two tangent lines at (0, 0). find the equatio
mr Goodwill [35]
Hello,

x=cos(t)==\ \textgreater \  \dfrac{dx}{dt} =-sin(t)\\&#10;y= \dfrac{sin(2t)}{2}==\ \textgreater \  \dfrac{dy}{dt} =cos(2t)\\&#10;&#10; \dfrac{dy}{dx} = \dfrac{ \frac{dy}{dt}}{ \frac{dx}{dt} } =- \frac{cos(2t)}{sin(t)} \\&#10;For\ x=0, \ t=cos(0)= \frac{ \pi }{2} +k \pi \\&#10;&#10;( \dfrac{dy}{dx} )_{x=0} =\pm\ 1\\&#10;&#10;tangents \ are\ \{ y=-x,y=x \}\\&#10;&#10;

3 0
4 years ago
Geometry: write formal proofs, ASAP!!!!
liq [111]

Answer:

By the definition of midpoints, AX and CX are congruent. By the definition of segment bisectors, X is the midpoint of BD, and therefore BX and DX are congruent. Since angle AXD and CXB are vertical angles, they are congruent by the vertical angles theorem. By SAS, triangles AXD and CXB are congruent. By CPCTC, angles A and C are congruent. By converse of alternate interior angles theorem, AD is parallel to CB.

3 0
2 years ago
Y^2(y^2+19)+3y-5+8^0
Softa [21]
Y²(y² + 19) + 3y - 5 + 8⁰
y²(y²) + y²(19) + 3y - 5 + 1
y⁴ + 19y² + 3y - 4
3 0
4 years ago
For g(x)=x²-x, find g(x) when x= -8
Darya [45]

Answer:

g(-8)= -8²-8= -64-8= g(-8)=-72

Step-by-step explanation:

7 0
3 years ago
There is 2.50m of rope and 11.5 inch pieces are cut. How many centimeters of rope will be left over?
Alborosie

Answer:

1.42 cm

Step-by-step explanation:

2.5 m = 98.4251 inches

98.4251 in / 11.5 in =8.5587

  .5587 inches left over =1.42 cm

4 0
2 years ago
Read 2 more answers
Other questions:
  • The supplement of an angle is 126ْ more than twice its complement. The measure of the angle is:
    5·2 answers
  • What is the value of Y who knows please help me
    14·1 answer
  • Ms. Barran loves reading. I realized 74.4 pages of my book for two hours. If I read at the same rate for the next five hours. Ho
    6·2 answers
  • Solve for x. 4(7x+6)=13
    9·2 answers
  • An airplane takes 3 hours to travel a distance of 2700 miles with the wind. The return trip takes 5 hours against the wind. Find
    8·1 answer
  • An economist wants to estimate the mean per capita income (in thousands of dollars) for a major city in Texas. He believes that
    9·1 answer
  • 6 lb 3 oz − 1 lb 4 oz
    14·2 answers
  • The box plot below shows the total amount of time, in minutes, the students of a class surf the Internet every day:
    15·1 answer
  • The Denver Post reported that, on average, a large shopping center had an incident of shoplifting caught by security 1.4 times e
    10·1 answer
  • The speed of light is around 6.706×10^8 miles per hour. What is the speed of light in units of miles per second?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!