1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
13

PLEASE HELP ME GUYS OR I WONT PASS this calculus!!!!​

Mathematics
1 answer:
KonstantinChe [14]3 years ago
5 0

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

You might be interested in
if Mr Green drives 100 miles in 2 hours. he continues to drive at the same speed if he doesn't stop how long will it take mr gre
Anton [14]

Answer:

8 hours

Step-by-step explanation:

1 - 50 miles

2 - 100 miles

3 - 150 miles

4 - 200 miles

5 - 250 miles

6 - 300 miles

7 - 350 miles

8 - 400 miles

and so on hope this helps

5 0
2 years ago
17−{2+2[−1(7−10)]2}<br><br> please help its due today!
elena-14-01-66 [18.8K]

Answer:

mnn

Step-by-step explanation:

nnnnnnnnnnnn

8 0
2 years ago
If (2x+10) and (3x+10) form a linear pair<br>find angles<br>.​
Alex_Xolod [135]
Linear pair angles are always supplementary.
So,
(2x+10) +(3x+10) = 180
5x+20 = 180
5x =180-20
5x=160
x= 160/5
x=32
Hence, the angles are 74 & 104
4 0
2 years ago
The price of a watch was increased by 7% to 1350. what was the price before increase?
Ad libitum [116K]

Answer:

The price before increase = 1255.5

Step-by-step explanation:

7% of 1350 = \frac{7*1350}{100}

= 94.5

The price before increase = 1350 - 94.5

The price before increase = 1255.5

6 0
3 years ago
Read 2 more answers
Find each missing dimension each prism
Anika [276]

Answer: 3

Step-by-step explanation:

Multiply 7 x 5.2

Divide 109.2/36.4

Answer 3

5 0
3 years ago
Other questions:
  • A baby weighed 7.25 pounds at birth. At the end of 8 months, the baby weighed 212
    14·1 answer
  • What is the slope intercept form of 6x - 2y = 14
    13·2 answers
  • The difference of two perfect cubes is 386. If the cube root of the smaller of the two numbers is 7, then the cube root of the l
    14·1 answer
  • Coach Smith went to the sporting goods store to get ready for tennis season. He bought 25 containers of tennis balls and 12 pack
    5·1 answer
  • What is the solution to the following system of equations? x − 4y = 6 2x + 2y = 12 (0, 10) (10, 0) (6, 0) (0, 6)
    12·1 answer
  • Can you help me Question 2
    5·1 answer
  • An ice cream stand sells chocolate, vanilla, and strawberry ice cream as well as a choice of 22 toppings. how many choices are t
    10·1 answer
  • What is the answer for x+6x
    5·1 answer
  • Write a linear function f with f(0)=7 and f(3)=1.
    9·1 answer
  • For the given data set; 2, 5, 7, 9, 11, 15 , 17 find the range.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!