Answer:
The volume is 
Step-by-step explanation:
The General Slicing Method is given by
<em>Suppose a solid object extends from x = a to x = b and the cross section of the solid perpendicular to the x-axis has an area given by a function A that is integrable on [a, b]. The volume of the solid is</em>

Because a typical cross section perpendicular to the x-axis is a square disk (according with the graph below), the area of a cross section is
The key observation is that the width is the distance between the upper bounding curve
and the lower bounding curve 
The width of each square is given by

This means that the area of the square cross section at the point x is

The intersection points of the two bounding curves satisfy
, which has solutions x = ±1.

Therefore, the cross sections lie between x = -1 and x = 1. Integrating the cross-sectional areas, the volume of the solid is
![V=\int\limits^{1}_{-1} {(2-2x^2)^2} \, dx\\\\V=\int _{-1}^14-8x^2+4x^4dx\\\\V=\int _{-1}^14dx-\int _{-1}^18x^2dx+\int _{-1}^14x^4dx\\\\V=\left[4x\right]^1_{-1}-8\left[\frac{x^3}{3}\right]^1_{-1}+4\left[\frac{x^5}{5}\right]^1_{-1}\\\\V=8-\frac{16}{3}+\frac{8}{5}\\\\V=\frac{64}{15}](https://tex.z-dn.net/?f=V%3D%5Cint%5Climits%5E%7B1%7D_%7B-1%7D%20%7B%282-2x%5E2%29%5E2%7D%20%5C%2C%20dx%5C%5C%5C%5CV%3D%5Cint%20_%7B-1%7D%5E14-8x%5E2%2B4x%5E4dx%5C%5C%5C%5CV%3D%5Cint%20_%7B-1%7D%5E14dx-%5Cint%20_%7B-1%7D%5E18x%5E2dx%2B%5Cint%20_%7B-1%7D%5E14x%5E4dx%5C%5C%5C%5CV%3D%5Cleft%5B4x%5Cright%5D%5E1_%7B-1%7D-8%5Cleft%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%5Cright%5D%5E1_%7B-1%7D%2B4%5Cleft%5B%5Cfrac%7Bx%5E5%7D%7B5%7D%5Cright%5D%5E1_%7B-1%7D%5C%5C%5C%5CV%3D8-%5Cfrac%7B16%7D%7B3%7D%2B%5Cfrac%7B8%7D%7B5%7D%5C%5C%5C%5CV%3D%5Cfrac%7B64%7D%7B15%7D)
Slope equals change in y divided by change in x.
m=(y2-y1)/(x2-x1)
m=(1-1)/(5--3)
m=0/8
m=0
The slope is zero.
So this is a horizontal line of the form y=1
Point slope form is

Since we have to write the equation of a perpendicular line we will have to use the slope that is opposite and reciprocal.


Hope this helps :)