Answer: That would be a massive 1500% increase from 16 to 240
Quadratic formula is x=(-b+-sqrt(b^2-4ac))/(2a)
a= 1, b=-4, and c=3
Therefore, x=(-(-4)+-sqrt((-4)^2-4(1)(3))/(2(1))
Solve for both the plus and minus equations; the answers will be the roots to the quadratic equation.
Answer:
Group 2
Step-by-step explanation:
Because in group 2 they have more 46 year old tourists so it is most likely that the random 46 year old belongs to group 2.
Answer:
45 to 18 it's easy
Step-by-step explanation:
subtract 18 from 63 and there is your ratio
Answer:
a) <u>0.4647</u>
b) <u>24.6 secs</u>
Step-by-step explanation:
Let T be interval between two successive barges
t(t) = λe^λt where t > 0
The mean of the exponential
E(T) = 1/λ
E(T) = 8
1/λ = 8
λ = 1/8
∴ t(t) = 1/8×e^-t/8 [ t > 0]
Now the probability we need
p[T<5] = ₀∫⁵ t(t) dt
=₀∫⁵ 1/8×e^-t/8 dt
= 1/8 ₀∫⁵ e^-t/8 dt
= 1/8 [ (e^-t/8) / -1/8 ]₀⁵
= - [ e^-t/8]₀⁵
= - [ e^-5/8 - 1 ]
= 1 - e^-5/8 = <u>0.4647</u>
Therefore the probability that the time interval between two successive barges is less than 5 minutes is <u>0.4647</u>
<u></u>
b)
Now we find t such that;
p[T>t] = 0.95
so
t_∫¹⁰ t(x) dx = 0.95
t_∫¹⁰ 1/8×e^-x/8 = 0.95
1/8 t_∫¹⁰ e^-x/8 dx = 0.95
1/8 [( e^-x/8 ) / - 1/8 ]¹⁰_t = 0.95
- [ e^-x/8]¹⁰_t = 0.96
- [ 0 - e^-t/8 ] = 0.95
e^-t/8 = 0.95
take log of both sides
log (e^-t/8) = log (0.95)
-t/8 = In(0.95)
-t/8 = -0.0513
t = 8 × 0.0513
t = 0.4104 (min)
so we convert to seconds
t = 0.4104 × 60
t = <u>24.6 secs</u>
Therefore the time interval t such that we can be 95% sure that the time interval between two successive barges will be greater than t is <u>24.6 secs</u>