The speed of sound in a solid would be 6000 metres per second
Answer:
Approximately
, assuming that the rocket had no propulsion onboard, and that air resistance on the rocket is negligible.
Explanation:
Initial velocity of this rocket:
.
When the rocket is at its maximum height, the velocity of the rocket would be equal to
. That is:
.
The acceleration of the rocket (because of gravity) is constantly downwards, with a value of
.
Let
denote the distance that the rocket travelled from the launch site to the place where it attained maximum height. The following equation would relate
to
,
, and
:
.
Apply this equation to find the value of
:
.
In other words, the maximum height that this rocket attained would be
.
Again, assume that the air resistance on this rocket is negligible. The rocket would return to the ground along the same path, and would cover a total distance of
.
Answer:
On the magnitude of the charges, on their separation and on the sign of the charges
Explanation:
The magnitude of the electric force between two charges is given by

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
From the formula, we see that the magnitude of the force depends on the following factors:
- magnitude of the two charges
- separation between the charges
Moreover, the direction of the force depends on the sign of the two charges. In fact:
- if the two charges have same sign, the force is repulsive
- if the two charges have opposite signs, the force is attractive
Answer:
I reckon towards b. Let me know if im right
1,000 W = 1 kW
100 W = 0.1 kW
(0.1 kW) x (6 h) = 0.6 kWh <=== energy
(0.6 kWh) x (£0.1359/kWh) = £0.0815 <=== cost of it