In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)
Answer:
3
Explanation:
v = v⁰ (its original speed) + a (negative acceleration) X t² (time)
v = 15 - 10 x 1.2 = 15 - 12 = 3 (it's slowing down)
True.
It has been studied in a research study that claims birds have the ability and capability to regenerate their hair cells.
Brainliest please?
Answer:
Explanation:
Givens
Vi = 10 m/s
Vf = 40 m/s
a = 3 m/s^2
Formula
a = (vf - vi) /t Substitute the givens into this formuls
Solution
3 = (40 - 10) / t Multiply both sides by t
3*t = t(40 - 10)/t Combine. Cancel t's on the right
3*t = 30 Divide by 3
3t/3 = 30 / 3
Answer: t = 10 seconds.
D - Most likely. Those who read the magazine can choose whether or not to return the survey.