The most accurate means of determining the purity of a substance is through the use of analytical methods. These methods, widely used in different industries, mostly involve chemical analysis, which can pinpoint the presence, identity and amount of impurities in the sample. The most simple chemical methods include gravimetry and titration. There are also the more advanced light-based or spectroscopic methods, such as UV-VIS spectroscopy, nuclear magnetic resonance and infrared spectroscopy. Chromatographic methods, such as gas chromatography and liquid chromatography, can also be used. Other methods used in testing the purity include mass spectroscopy, capillary electrophoresis, optical rotation and particle size analysis.
-basically nerdy talk for using machines controlling chemicals or other atoms to pinpoint any impurities
Answer:
Factors affecting a system in equilibrium are;
- concentration
- temperature
- pressure
Explanation:
A chemical equilibrium occurs when there is a proportion in mixtures of reactants and products.
For concentration, where some of the reactants are removed from an equilibrium reaction, the contents in the product side will be unbalanced thus the system will not be equilibrium and according to the Le Chatelier's principle, a system will shift in a manner to return balance in the reaction.
In temperature, in endothermic reactions, energy is considered as a reactant where as in exothermic reactions, energy is considered as a product.In exothermic reactions increase in temperature increases the reaction causing unbalanced reaction. A decrease in temperature causes a backward reaction which is endothermic
Increase in pressure causes the equilibrium to shift to the side of reaction with fewer moles of the reacting gas, where as a decrease in pressure forces the equilibrium to shift to the side of reaction with more moles of gas.
Answer:
Electron gain enthalpy becomes more and more negative from left to right in a period. As we move across a period from left to right the atomic size decreases and the nuclear charge increases
Energy is absorbed to break bonds, and released when bonds are formed.