<span> By definition, </span>oxidation number<span> is the charge left on the given atom when all the bonding pairs (of electrons) are broken, so the oxidation number of Br will be +1</span>
Answer:
Theoretical moles of V are 1.6 moles
Explanation:
The theoretical yield of a reaction is defined as the amount of product you would make if all of the limiting reactant was converted into product.
In the reaction:
V2O5(s) + 5Ca(i) → 2V(i) + 5CaO(s)
Based on the reaction, 1 mol of V2O5 needs 5 moles of Ca for a complete reaction. As there are just 4 moles, <em>limiting reactant is Ca.</em> As there are produced 2 moles of V per 5mol of Ca, Theoretical moles of V are:
4 moles of Ca × (2mol V / 5Ca) = <em>1.6 moles of V</em>
<em></em>
I hope it helps!
From the calculation, the pH of the solution after dilution is 3.
<h3>What is the pH?</h3>
The pH is the hydrogen ion concentration of the solution. Now we know that;
C1 = 0.010 m
V1 = 10.0 ml
V2 = 10.0 ml + 100.0 ml = 110 ml
C2 = ?
C1V1 = C2V2
C2 = C1V1 /V2
C2 = 0.010 m * 10.0 ml / 110 ml
C2 = 0.00091 M
pH = -log[0.00091 M]
pH = 3
Learn more about pH:brainly.com/question/15289741
#SPJ1
The last row going across
The graph of the plot of acceleration against force is a straight line graph. Option B
<h3>What is the relationship between force and acceleration?</h3>
From the Newton's second law of motion we can derive that; F = ma
F= mass
a = acceleration.
This implies that the acceleration and the mass of a body has a linear relationship. We could then assert that the force is directly proportional to the acceleration with the mass being the constant in the equation.
As such, the force that is imparted to the body is what determines the acceleration and the both increases or decreases linearly. Thus the graph of the plot of acceleration against force is a straight line graph. Option B
Learn more about acceleration:brainly.com/question/12550364?
#SPJ1