Answer:
<h3>tartaric acids</h3>
The molecular formula of the citric acid is C6H8O7. The structure of citric acid is as follows: The acid present in tamarind is tartaric acid.
<h3>Vinegar- </h3>
Oxalic
From the information given, the total volume of rubbing alcohol is 88.2 ml
68.6 % of this volume is isopropanol.
We will assume 88.2 ml represents 100% volume, so the volume of water will be 31.4 %
The volume of isopropanol is
68.6/100 x 88.2 → 0.686 × 88.2 = 60.505 ml
The volume of isopropanol is 60.5 ml.
Volume of water will be 88.20 - 60.5 = 27.7 ml
(27.7 / 88.2 × 100 = 31.4% )
Adding 60.5 ml of isopropanol to 27.7 ml of water to make up 88.2 ml will give 68.6 % v/v isopropanol to water solution.
The new trend will probably be the technology that's in that certain year. Like the trend in the modern days are all electronics or will have to do with electronics. Hope this helps! :) Pls mark me as the BRAINLIEST!!!
Answer : The balanced equations will be:

Explanation :
The general rate of reaction is,

Rate of reaction : It is defined as the change in the concentration of any one of the reactants or products per unit time.
The expression for rate of reaction will be :
![\text{Rate of disappearance of A}=-\frac{1}{a}\frac{d[A]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20A%7D%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of B}=-\frac{1}{b}\frac{d[B]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20B%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D)
![\text{Rate of formation of C}=+\frac{1}{c}\frac{d[C]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20C%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D)
![\text{Rate of formation of D}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20D%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
![Rate=-\frac{1}{a}\frac{d[A]}{dt}=-\frac{1}{b}\frac{d[B]}{dt}=+\frac{1}{c}\frac{d[C]}{dt}=+\frac{1}{d}\frac{d[D]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7B1%7D%7Ba%7D%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7Bb%7D%5Cfrac%7Bd%5BB%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bc%7D%5Cfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7Bd%7D%5Cfrac%7Bd%5BD%5D%7D%7Bdt%7D)
From this we conclude that,
In the rate of reaction, A and B are the reactants and C and D are the products.
a, b, c and d are the stoichiometric coefficient of A, B, C and D respectively.
The negative sign along with the reactant terms is used simply to show that the concentration of the reactant is decreasing and positive sign along with the product terms is used simply to show that the concentration of the product is increasing.
Now we have to determine the balanced equations corresponding to the following rate expressions.
![Rate=-\frac{d[CH_4]}{dt}=-\frac{1}{2}\frac{d[O_2]}{dt}=+\frac{1}{2}\frac{d[H_2O]}{dt}=+\frac{d[CO_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BCH_4%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BCO_2%5D%7D%7Bdt%7D)
The balanced equations will be:

Its made up of a long chain of monomers so proteins are polymers made of amino acids I hope this helps! ^^;