Answer:
Power = Work / Time
P = 400 kg * 9.8 m/s * 4.5 m / 3600 sec = 4.9 J/s = 4.9 Watts
Also, 4.9 Watts / (746 Watts / Horsepower) = .0066 Hp
Answer:
a quantitative observation because it includes numerical data
The complex, highly technical formula for capacitors is
<em>Q = C V</em>
Charge = (capacitance) (voltage)
Charge = (3 F) (24 V)
<em>Charge = 72 Coulombs</em>
The positive plate of the capacitor is missing 72 coulombs worth of electrons. They were sucked into positive terminal of the battery stack.
The negative plate of the capacitor has 72 coulombs worth of extra electrons. They came from the negative terminal of the battery stack.
You should be aware that this is a humongous amount of charge ! An average <u><em>lightning bolt</em></u>, where electrons flow between a cloud and the ground for a short time, is estimated to transfer around <u><em>15 coulombs</em></u> of charge !
The scenario in the question involves a "supercapacitor". 3 F is is no ordinary component ... One distributor I checked lists one of these that's able to stand 24 volts on it, but that product costs $35 apiece, you have to order at least 100 of them at a time, and they take 2 weeks to get.
Also, IF you can charge this animal to 24 volts, it will hold 864J of energy. You'd probably have a hard time accomplishing this task with a bag of leftover AA batteries.
<span>Since Florence is east, then Florence is 5 miles due west of Paris (30-25). Then, using the Pythagorean theorem with 45 miles as the length and 5 miles as the width, the square root of (45^2+5^2) is 45.277 miles.</span>
Much energy as would Microraptor gui have to expend to fly with a speed of 10 m/s for 1.0 minutes is 486 J.
The first step is to find the energy that Microraptor must release to fly at 10 m/s for 1.0 minutes. The energy that Microraptor must expend to fly can be found using the relationship between Power and Energy.
P = E/t
Where:
P = power (W)
T = time (s)
Now, a minimum of 8.1 W is required to fly at 10 m/s. So, the energy expended in 1 minute (60 seconds) is
P = E/t
E = P x t
E = 8.1 x 60
E = 486 Joules
Thus, the energy that Microraptor must expend to fly at 10 m/s for 1.0 minutes is the 486 J.
Learn more about Microraptor gui here brainly.com/question/1200755
#SPJ4