1. The iris regulates the amount of light entering the eye
2. The retina receives and organises visual information
3. The lens refracts light rays in a camera
The approximate speed of the sound wave traveling through the solid material is 1012m/s.
<h3>
Wavelength, Frequency and Speed</h3>
Wavelength is simply the distance over which the shapes of waves are repeated. It is the spatial period of a periodic wave.
From the wavelength, frequency and speed relation,
λ = v ÷ f
Where λ is wavelength, v is velocity/speed and f is frequency.
Given the data in the question;
- Frequency of sound wave f = 440Hz = 440s⁻¹
- Wavelength of the wave λ = 2.3m
To determine the approximate speed of the wave, we substitute our given values into the expression above.
λ = v ÷ f
2.3m = v ÷ 440s⁻¹
v = 2.3m × 440s⁻¹
v = 1012ms⁻¹
v = 1012m/s
Therefore, the approximate speed of the sound wave traveling through the solid material is 1012m/s.
Learn more about Speed, Frequency and Wavelength here: brainly.com/question/27120701
Answer:
The SI unit of time is second (s) and temperature is Kelvin (K)
Explanation:
hope it is helpful to you
Answer:
A. Scientists use seismic computer models to measure the atmospheric conditions above the Earth's crust
Explanation:
why would use atmosphere to study the layers of earth? dont think thats possible
Answer:
180 m
Explanation:
Case 1.
U = 40 km/h = 11.1 m/s, V = 0, s = 20 m
Let a be the acceleration.
Use third equation of motion
V^2 = u^2 + 2 as
0 = 11.1 × 11.1 - 2 × a × 20
a = 3.08 m/s^2
Case 2.
U = 220 km/h = 33.3 m/s, V = 0
a = 3.08 m/s^2
Let the stopping distance be x.
Again use third equation of motion
0 = 33.3 × 33.3 - 2 × 3.08 × x
X = 180 m