The centripetal acceleration is given by

where v is the tangential speed and r the radius of the circular orbit.
For the car in this problem,

and r=40 m, so we can re-arrange the previous equation to find the velocity of the car:
To create the shapes, stars are arranged on a piece of cardboard in the desired configuration. If the stars are placed in a smiley face pattern on the cardboard, for example, they will explode into a smiley face in the sky. In fact, you may see several smiley faces in the sky at one time.
Your Welcome
Answer:

Explanation:
<u>Given Data:</u>
Length = l = 820 mm = 0.82 m
Acceleration due to gravity = g = 9.8 ms⁻²
<u>Required:</u>
Frequency = f = ?
<u>Formula:</u>

<u>Solution:</u>
![\displaystyle f =\frac{1}{2 \pi} \sqrt{\frac{g}{l} } \\\\Put\ the\ givens\\\\f=\frac{1}{2 \pi} \sqrt{\frac{9.8}{0.82} }\\\\ f = 0.159 \times \sqrt{11.95} \\\\f=0.159 \times 3.457\\\\f=0.55 \ Hz\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f%20%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Csqrt%7B%5Cfrac%7Bg%7D%7Bl%7D%20%7D%20%5C%5C%5C%5CPut%5C%20the%5C%20givens%5C%5C%5C%5Cf%3D%5Cfrac%7B1%7D%7B2%20%5Cpi%7D%20%5Csqrt%7B%5Cfrac%7B9.8%7D%7B0.82%7D%20%7D%5C%5C%5C%5C%20f%20%3D%200.159%20%5Ctimes%20%5Csqrt%7B11.95%7D%20%5C%5C%5C%5Cf%3D0.159%20%5Ctimes%203.457%5C%5C%5C%5Cf%3D0.55%20%5C%20Hz%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is
, and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.