Answer:
a
Solid Wire
Stranded Wire 
b
Solid Wire
Stranded Wire
Explanation:
Considering the first question
From the question we are told that
The radius of the first wire is 
The radius of each strand is 
The current density in both wires is 
Considering the first wire
The cross-sectional area of the first wire is

= >
= >
Generally the current in the first wire is

=> 
=>
Considering the second wire wire
The cross-sectional area of the second wire is

=> 
=> 
Generally the current is

=> 
=> 
Considering question two
From the question we are told that
Resistivity is 
The length of each wire is 
Generally the resistance of the first wire is mathematically represented as
=>
=>
Generally the resistance of the first wire is mathematically represented as
=>
=>
Answer:
im pretty sure about C
Explanation:
a switch acts a resistor that can be turned on and off
Also it's the same for Automotive purposes
Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)
Answer:
q_poly = 14.55 KJ/kg
Explanation:
Given:
Initial State:
P_i = 550 KPa
T_i = 400 K
Final State:
T_f = 350 K
Constants:
R = 0.189 KJ/kgK
k = 1.289 = c_p / c_v
n = 1.2 (poly-tropic index)
Find:
Determine the heat transfer per kg in the process.
Solution:
-The heat transfer per kg of poly-tropic process is given by the expression:
q_poly = w_poly*(k - n)/(k-1)
- Evaluate w_poly:
w_poly = R*(T_f - T_i)/(1-n)
w_poly = 0.189*(350 - 400)/(1-1.2)
w_poly = 47.25 KJ/kg
-Hence,
q_poly = 47.25*(1.289 - 1.2)/(1.289-1)
q_poly = 14.55 KJ/kg
Answer:
b
Explanation:
i took the quiz i think its right