Answer:
External force on him will be 112 N
Explanation:
We have given the mass of the sprinter m =70 kg
Acceleration of the sprinter 
We have to find the net external force
According to second law of motion force = mass ×acceleration
Force is dependent on the mass and acceleration
So 
So external force will be 112 N
Given: Change of x is 35.4m, Velocity Final=7.10 m/s, Velocity Initial=0m/s
Find: Acceleration
Analysis:
Vf²=Vi²+2aΔx (Velocity final squared equals Velocity initial squared plus 2 times acceleration times change of x)
(7.10 m²/s)²=(0 m/s)²+2a(35.4 m)
50.41 m/s²=(70.8 m)a
a=0.712 m/s²
Explanation:
u=166m/s, v=0(at it's highest point final velocity is zero), a=9.8m/s², t=8.6s
by the formula, S=ut+½at².
S=[166×8.6+½.×9.8×(8.6)²]. ...by calculation
S = 1427.6+362.404
S=1790.004m
hope this helps you.
This would be typical of an elastic collision.
Answer:
F=ma
therefore A=F/M
Explanation:
i think that's what your doing but I'm not sure