Explanation:
The given data is as follows.
q = 6.0 nC = 
inner radius (r) = 1.0 cm = 0.01 m (as 1 cm = 100 m)
So, there will be same charge on the inner surface as the charge enclosed with an opposite sign.
Formula to calculate the charge density is as follows.
.......... (1)
Since, area of the sphere is as follows.
A =
........... (2)
Hence, substituting equation (2) in equation (1) as follows.

=
= 
or, = 4.77 
Thus, we can conclude that the resulting charge density on the inner surface of the conducting sphere is 4.77
.
<span>Answer:
I'm pretty sure the SA / V ratio would get smaller. Assume that the cell is more or less spherical. SA = 4(pi)r^2, while V = (3/4)(pi)r^3. The ratio = (4(pi)r^2)/((3/4)(pi)r^3), which can be simplified to 3/r. Thus, the larger r gets, the smaller the ratio becomes.</span>
This is because of the conservation of angular momentum, which allows most planets to spin in the same direction, but Venus and Uranus have seem to ignore this as they spin in different directions, as Venus spins clockwise and Uranus is on its side
Answer: Jupiter's mass
Explanation:
From Kepler's third law:

where T is the orbital period of a satellite, a is the average distance of the satellite from the Planet, M is the mass of the planet, G is the gravitational constant.
If the average distance of one of Jupiter's moons to Jupiter and its orbital period around Jupiter is given then mass of the Jupiter can be found:

Explanation:
Centripetal acceleration is:
a = v² / r
a = (4.0 m/s)² / 0.60 m
a = 26.6 m/s²