Answer:
pH = 2.69
Explanation:
The complete question is:<em> An analytical chemist is titrating 182.2 mL of a 1.200 M solution of nitrous acid (HNO2) with a solution of 0.8400 M KOH. The pKa of nitrous acid is 3.35. Calculate the pH of the acid solution after the chemist has added 46.44 mL of the KOH solution to it.</em>
<em />
The reaction of HNO₂ with KOH is:
HNO₂ + KOH → NO₂⁻ + H₂O + K⁺
Moles of HNO₂ and KOH that react are:
HNO₂ = 0.1822L × (1.200mol / L) = <em>0.21864 moles HNO₂</em>
KOH = 0.04644L × (0.8400mol / L) = <em>0.0390 moles KOH</em>
That means after the reaction, moles of HNO₂ and NO₂⁻ after the reaction are:
NO₂⁻ = 0.03900 moles KOH = moles NO₂⁻
HNO₂ = 0.21864 moles HNO₂ - 0.03900 moles = 0.17964 moles HNO₂
It is possible to find the pH of this buffer (<em>Mixture of a weak acid, HNO₂ with the conjugate base, NO₂⁻), </em>using H-H equation for this system:
pH = pKa + log₁₀ [NO₂⁻] / [HNO₂]
pH = 3.35 + log₁₀ [0.03900mol] / [0.17964mol]
<h3>pH = 2.69</h3>
If the temperature of a liquid-vapor system at equilibrium increases, it will shift towards the vapor phase, assuming that the pressure remains equal. The concentration of vapor will also increase relative to the concentration of liquid in the system. Thus, the new equilibrium condition will have more vapor than liquid.
according to shape, size, and their relationship to surrounding layers of rock
Explanation:
Scientists classify intrusive features according to their shape, size and relationship to surrounding layers of rocks.
Intrusive igneous features are the sills, di/kes, batholith, laccoiith, lopolith e.t.c
- When magma cools and solidifies within the earth crust, they form intrusive igneous rocks.
- Intrusive igneous rocks differs from one another in their shape, size and relationship to surrounding rocks.
- For example, batholith is a large intrusive body that extends for several kilometers in the earth surface.
- Sills and di/kes are smaller bodies. Sills forms parallel to orientation of rocks in an area. Di/kes are known to cut across the orientation.
Learn more:
Sedimentary rocks brainly.com/question/2740663
#learnwithBrainly
Answer:
1.62x10⁻³ moles of NaOH were dispensed
Explanation:
Molarity is an unit in chemistry defined as the ratio between moles of solute (In the problem, NaOH), per liter of solution.
The concentration of the solution is 0.125moles per liter. That means 1L of solution has 0.125 moles of NaOH.
The volume you dispensed in the buret was:
15.67mL - 2.73mL =
12.94mL of the 0.125M NaOH are:
12.94mL = 0.01294L * (0.125moles / L) =
<h3>1.62x10⁻³ moles of NaOH were dispensed</h3>