The law of conservation of mass states that mass is neither created nor destroyed. Since we have 2 g/mol of A and 3 g/mol of B then AB should be equal to the sum of their molar mass that is
2 g/mol + 3 g/mol = 5 g/mol AB
for the case of A2B3
A2 = 2 * 2 = 4 g/mol
B3 = 3 * 3 = 9 g/mol
therefore A2B3 = 13 g/mol
Answer:
Molarity = 2.3 M
Explanation:
Molarity can be calculated using the following rule:
Molarity = number of moles of solute / volume of solution
1- getting the number of moles:
We are given that:
mass of solute = 105.96 grams
From the periodic table:
atomic mass of carbon = 12 grams
atomic mass of hydrogen = 1 gram
atomic mass of oxygen = 16 grams
Therefore:
molar mass of C2H6O = 2(12) + 6(1) + 16 = 46 grams
Now, we can get the number of moles as follows:
number of moles = mass / molar mass = 105.96 / 46 = 2.3 moles
2- The volume of solution is given = 1 liter
3- getting the molarity:
molarity = number of moles of solute / volume of solution
molarity = 2.3 / 1
molarity = 2.3 M
Hope this helps :)
<span>c] The golfer sent the golf ball flying toward the cup to score a hole in one.</span>
To solve this question, you must use the formula: q=mc(change in temperature), where q is heat, m is mass, C is specific heat and temperature change is temperature change. The specific heat for ice is 2.1kJ/Kg x K (given). The change in temperature is 15 degrees Celsius (which you should change to kelvins so you can cancel out units), or 273 + 15 = 288K. The mass is 150 grams, which is 0.15 kg. Now, we can solve for q, heat. We will do this by substituting variables into the formula. After simplifying and cancelling out units, the answer we get is: 90.72kJ.