<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
Answer:
The object in a uniform motion covers same distances in an equal time period. Objects in a non-uniform motion cover dissimilar distances in an equal time period.
Explanation:
The speed of the object traveling in uniform motion is constant, the actual speed and the average speed of the moving body is same.
Answer:
a)
b)
c)
d)
Explanation:
From the question we are told that:
Population percentage 
Sample size 
Let x =customers ask for water
Let y =customers dose not ask for water with their meal
Generally the equation for y is mathematically given by

Generally the equation for pmf p(x) is mathematically given by

a)
Generally the probability that exactly 6 ask for water is mathematically given by


b)
Generally the probability that less than 9 ask for water with meal is mathematically given by




c)
Generally the probability that at least 3 ask for water with meal is mathematically given by

![p(x\geq3)=1-[p(0)+p(1)+p(2)]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5Bp%280%29%2Bp%281%29%2Bp%282%29%5D)
![p(x\geq3)=1-[0.00001+0.0015+0.0106]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5B0.00001%2B0.0015%2B0.0106%5D)
![p(x\geq3)=1-[0.0122]](https://tex.z-dn.net/?f=p%28x%5Cgeq3%29%3D1-%5B0.0122%5D)

d)
Generally the mean and standard deviation of sample size is mathematically given by
Mean

Standard deviation


Explanation:
Okay, well, Saturn's rings form a wide and complex system, consisting mostly of particles and pieces of ice, and are highly visible. They may have formed from one or more moons that broke up due to a collision, or are left over from early debris that never coalesced into a moon... And, The rings of Uranus are thin and hard to see, consisting mostly of chunks of carbon and hydrocarbons with very little reflectivity. They may also have formed from the breakup of a small moon due to a collision. They may be kept thin by the presence of shepherd moons.
Hope I helped !
:)