Answer:
Red light
Explanation:
The energy emitted during an electron transition in an atom of hydrogen is given by

where
is the energy of the lowest level
n1 and n2 are the numbers corresponding to the two levels
Here we have
n1 = 3
n2 = 2
So the energy of the emitted photon is

Converting into Joules,

And now we can find the wavelength of the emitted photon by using the equation

where h is the Planck constant and c is the speed of light. Solving for
,

And this wavelength corresponds to red light.
<span>Thermocline is a layer between
warm water from the ocean’s surface and cool water from below the ocean. In here,
the temperature decreases rapidly from the warmer layer to the colder layer. A thermocline forms due to the heat of the sun
heating the ocean’s surface. Because of the difference in density between warm
and cooler ocean water, cooler ocean water sinks and warmer ocean water floats.
This is caused due to the heat and mass transfer between particles of the
ocean. The answer is letter C. The sun’s radiation does not extend below a
certain depth; therefore, deeper ocean water is colder than surface water.</span>
If the period of a satellite is T=24 h = 86400 s that means it is in geostationary orbit around Earth. That means that the force of gravity Fg and the centripetal force Fcp are equal:
Fg=Fcp
m*g=m*(v²/R),
where m is mass, v is the velocity of the satelite and R is the height of the satellite and g=G*(M/r²), where G=6.67*10^-11 m³ kg⁻¹ s⁻², M is the mass of the Earth and r is the distance from the satellite.
Masses cancel out and we have:
G*(M/r²)=v²/R, R=r so:
G*(M/r)=v²
r=G*(M/v²), since v=ωr it means v²=ω²r² and we plug it in,
r=G*(M/ω²r²),
r³=G*(M/ω²), ω=2π/T, it means ω²=4π²/T² and we plug that in:
r³=G*(M/(4π²/T²)), and finally we take the third root to get r:
r=∛{(G*M*T²)/(4π²)}=4.226*10^7 m= 42 260 km which is the height of a geostationary satellite.
Answer:
The solar radiation is first intercepted by Earth's atmosphere, just a small part of the radiation is absorbed by gases such as water vapor. Some of the radiation is reflected back to space by the clouds and Earth's surface.
Answer:
The correct answer is B) Fewer people would identify as an atheist because people were not willing to share alternative religious beliefs publically.
Explanation:
A chart of mid-17th-century religious beliefs differs from this chart in that Fewer people would identify as an atheist because people were not willing to share alternative religious beliefs publically.
In the 1600s, people did not have total freedom of speech if they had any. The church had a tremendous influence in the life of people and religious beliefs defined societies and families. The Church exerted its power and influence in many aspects of the people's lives and something out of the purview of the church or different to the religious beliefs of the Church was considered to be sacrilegious. The Church prosecuted people for being against the Church, so people of that time preferred to say that they were religious people supporting the church. Being an atheist was not really an option in the 17th century.
<u><em>Hope this helps!!</em></u>