Evaluate <span><span>cos<span>(10)</span></span><span>cos10</span></span> to get <span>0.984807750.98480775</span>.<span><span><span>0.98480775<span>cos<span>(80)</span></span></span><span><span>−<span>sin<span>(10)</span></span></span><span>sin<span>(80)</span></span></span></span><span><span>0.98480775<span>cos80</span></span><span><span>-<span>sin10</span></span><span>sin80</span></span></span></span>Evaluate <span><span>cos<span>(80)</span></span><span>cos80</span></span> to get <span>0.173648170.17364817</span>.<span><span><span>0.98480775⋅0.17364817</span><span><span>−<span>sin<span>(10)</span></span></span><span>sin<span>(80)</span></span></span></span><span><span>0.98480775⋅0.17364817</span><span><span>-<span>sin10</span></span><span>sin80</span></span></span></span>Multiply <span>0.984807750.98480775</span> by <span>0.173648170.17364817</span> to get <span>0.171010070.17101007</span>.<span><span>0.17101007<span><span>−<span>sin<span>(10)</span></span></span><span>sin<span>(80)</span></span></span></span><span>0.17101007<span><span>-<span>sin10</span></span><span>sin80</span></span></span></span>Evaluate <span><span>sin<span>(10)</span></span><span>sin10</span></span> to get <span>0.173648170.17364817</span>.<span><span>0.17101007<span><span><span>−1</span>⋅0.17364817</span><span>sin<span>(80)</span></span></span></span><span>0.17101007<span><span><span>-1</span>⋅0.17364817</span><span>sin80</span></span></span></span>Multiply <span><span>−1</span><span>-1</span></span> by <span>0.173648170.17364817</span> to get <span><span>−0.17364817</span><span>-0.17364817</span></span>.<span><span>0.17101007<span><span>−0.17364817</span><span>sin<span>(80)</span></span></span></span><span>0.17101007<span><span>-0.17364817</span><span>sin80</span></span></span></span>Evaluate <span><span>sin<span>(80)</span></span><span>sin80</span></span> to get <span>0.984807750.98480775</span>.<span><span>0.17101007<span><span>−0.17364817</span>⋅0.98480775</span></span><span>0.17101007<span><span>-0.17364817</span>⋅0.98480775</span></span></span>Multiply <span><span>−0.17364817</span><span>-0.17364817</span></span> by <span>0.984807750.98480775</span> to get <span><span>−0.17101007</span><span>-0.17101007</span></span>.<span><span>0.17101007<span>−0.17101007</span></span><span>0.17101007<span>-0.17101007</span></span></span>Subtract <span>0.171010070.17101007</span> from <span>0.171010070.17101007</span> to get <span>0</span>.0
Answer:
x>3
Step-by-step explanation:
Answer:
150°
Step-by-step explanation:
It is given that CosФ < 0 i.e CosФ is negative.
Therefore, the minimum the value of Ф for which CosФ <0 will be in the second quadrant i.e 90° < Ф < 180°.
Now it is also given that, Sin Ф =0.5 {the value of SinФ is positive because Sin value is positive in second quadrant.}
⇒ Ф =180° - Sin⁻¹ (0.5) = 180°-30° =150° (Answer)
Answer:
Step-by-step explanation:
A(-6, 2), B(6,-3) and C(-6, -3)
AB² = (x₂ - x₁)² + (y₂ - y₁)²
= ( 6 -[-6])² + ( -3 -2)²
= ( 6 + 6)² + ( -3 -2)² = 12² + (-5)² = 144 + 25 =169
AB = √169 = 13 units
BC² = ( -6 -6)² + ( -3 - [-3])² = (-6-6)² + (-3 +3)²
= (-12)² + 0 = 144
BC = √144 = 12 unis
CA² = (-6 - [-6])² +(-3-2)² = (-6 + 6)² + ( -3-2)²
= 0 + (-5)² = 25
CA =√25 = 5 units
length of the hypotenuse of a right triangle = 13units
Answer:
1. the range of f^-1(x) is {10, 20, 30}.
2. the graph of f^-1(x) will include the point (0, 3)
3. n = 8
Step-by-step explanation:
1. The domain of a function is the range of its inverse, and vice versa. The range of f^-1(x) is {10, 20, 30}.
__
2. See above. The domain and range are swapped between a function and its inverse. That means function point (3, 0) will correspond to inverse function point (0, 3).
__
3. The n-th term of an arithmetic sequence is given by ...
an = a1 +d(n -1)
You are given a1 = 2, a12 = 211, so ...
211 = 2 + d(12 -1)
209/11 = d = 19 . . . . . solve the above equation for the common difference
Now, we can use the same equation to find n for an = 135.
135 = 2 + 19(n -1)
133/19 = n -1 . . . . . . . subtract 2, divide by 19
7 +1 = n = 8 . . . . . . . . add 1
135 is the 8th term of the sequence.