Using Newton's second law;
F = ma, where m = mass, a = acceleration or deceleration
a = Δv/t = (v-u)/t, but v= 0, u = 10 m/s, t = 1.
Then,
a = (0-10)1 = -10 m/s^2
Substituting;
F = ma = 10*-10 = -100 N
The mattress exerts 100 N to stop the ball.
Answer:
D.
R increases
V is constant
I decreases
Explanation:
The resistance of a wire is given by the following formula:

It is clear from this formula that resistance is directly proportional to the length of wire. So, when length of wire is increased, <u>the resistance of circuit increases</u>.
The <u>voltage in the circuit will be constant</u> as the voltage source remains same and it is not changed.
Now, we can use Ohm Law:
V = IR
at constant V:
I ∝ 1/R
it means that current is inversely proportional to resistance. Hence, the increase of resistance causes <u>the current in circuit to decrease.</u>
Therefore, the correct option will be:
<u>D.</u>
<u>R increases
</u>
<u>V is constant
</u>
<u>I decreases</u>
Answer:
Seismic waves are mechanical waves because they travel through the medium of the Earth.
Explanation:
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
Answer:
1. B
2. B
3. D
4. A
Hope this was correct! A lot of the answers are already in the article itself and the wording is just different. I suggest now that for information retainment, you read the article again with the correct points in mind and see if you can spot the points where the answers are stated!