Answer:
a = -2.4 m/s²
Explanation:
Given,
The initial speed of the bus, u = 24 m/s
The final speed of bus, v = 12 m/s
Time taken to reach final speed is, t = 5.0 s
The acceleration of the body is given by the change in velocity by time
a = (v - u) / t
= (12 - 24) / 5
= -2.4 m/s²
The negative sign in the acceleration indicates that the bus is decelerating.
Therefore, the acceleration of the bus is, a = -2.4 m/s²
Answer:
72.54 degree west of south
Explanation:
flow = 3.9 m/s north
speed = 11 m/s
to find out
point due west from the current position
solution
we know here water is flowing north and ship must go south at an equal rate so that the velocities cancel and the ship just goes west
so it become like triangle with 3.3 point down and the hypotenuse is 11
so by triangle
hypotenuse ×cos(angle) = adjacent side
11 ×cos(angle) = 3.3
cos(angle) = 0.3
angle = 72.54 degree west of south
Answer:
the law of motion
Explanation:
because the wheels are moving it means motion i am not sure which number law it is but I believe that it is 2nd but u should look it up to be safe
Both the size and the shape of the tree changes
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A