Answer:
The relationship of the speed of sound, its frequency, and wavelength is the same as for all waves: vw = fλ, where vw is the speed of sound, f is its frequency, and λ is its wavelength. ... The more rigid (or less compressible) the medium, the faster the speed of sound
Explanation:
Pretty sure it’s a chemical change.
Answer:
A) 7.9 x 10⁶ inches
B) 1004 g
C) 2.8 x 10³ inches/ min
D) 1.2 x 10⁻⁴ mm
Explanation:
A) Since 39.37 inches = 1 m, you can convert meters to inches by multiplying by the conversion factor (39.37 inches / 1 m).
Notice that if 39.37 inches = 1 m then 39.37 inches / 1 m = 1. That means that when you multiply by a conversion factor, you are only changing units since it is the same as multiplying by 1 :
2.0 x 10⁵ m * (39.37 inches / 1 m) = 7.9 x 10⁶ inches
B) Conversion factors : (2.205 pounds / 1 kg) and (453.59 g / 1 pound), because 2.205 pounds = 1 kg and 1 pound = 453.59 g. Then:
1.004 kg * ( 2.205 pounds / 1 kg) * ( 453.59 g / 1 pound) = 1004 g
C) Conversion factor: (39.37 inches / 1 m) and (60 s / 1 min)
1.2 m/s * (39.37 inches / 1 m) * ( 60 s / 1 min) = 2.8 x 10³ inches/ min
D)Converison factor ( 1 mm / 1 x 10⁶ nm):
120 nm (1 mm / 1 x 10⁶ nm) = 1.2 x 10⁻⁴ mm
As we know that Molarity is given as,
M = moles / V
Solving for V,
V = moles / M ------------------(1)
Also, moles is equal to,
moles = mass / M. mass -------------(2)
puting value of moles from eq. 2 into eq. 1,
V = (mass / M.mass) / M
Putting values,
V = (45 g / 164 g/mol) / 1.3 mol/dm³
V = 0.21 dm³