Answer:
Answer choice B
Explanation:
Since you do not know the volume of the liquid in each beaker, the one in the smaller beaker could have more substance and therefore more thermal energy. If they had the same amount of substance, then the more voluminous one would radiate faster. However, since you do not know this, there is no way to tell. PM me if you have more questions. Hope this helps!
Answer:
1)
(500.mL)(.200M)/.150M = 667 mL
667mL - 500mL = 167mL of water is needed
2)
1.0 L = 1000mL
M1 V1 = M2 V2
(1.6 mol/L) (175 mL) = (x)(1000mL)
x = .28M
<span>The surface area is 109.3 square centimeters or 0.01093 square meters. The area formula requires that we use the radius of the disc. We can find the radius by diving the diameter by 2, so radius = 11.8/2 or 5.9 cm. We can use 3.14 as an approximation for π. The surface area is 3.14 * (5.9*5.9).
Since the diameter is given in cm, the surface area units are in square centimeters. To convert to meters, divide any measurement in centimeters by 100, but we need to convert to "square" meters, so we need to divide our square centimeters by 100 * 100, or by 10,000. Dividing 109.3 by 10,000 results in 0.01093 square "meters".</span>
Answer:
Their average kinetic energy increases
Explanation:
The average kinetic energy of the rice molecules increases as the pot is left on the cooking stove.
Heat is transferred to the pot by conduction from the heat source. The heat is then transferred to the rice in the cooking pot by convection.
- As the water in the pot heats up.
- The rice gains thermal energy.
- This causes the molecules of the rice particles to start vibrating.
- As the molecules vibrate about their fixed position, their thermal energy continues to increase.
- Therefore, the amount of heat absorbed by the rice increases with time and this actually cooks the food.