Answer:
113.8g
Explanation:
Statement of problem: mass of 1.946mole of NaCl
Given parameters:
Number of moles of NaCl = 1.946mole
Unknown: mass of NaCl
Solution
To find the mass of NaCl, we apply the concept of moles which expresses the relationship between number of moles and mass according to the equation below:
Number of moles = 
To find the molar mass of NaCl:
the atomic mass of Na = 23g
atomic mass of Cl = 35.5g
Molar mass of NaCl = (23 + 35.5) = 58.5gmol⁻¹
Mass of NaCl = Number of moles x molar mass of NaCl
Mass of NaCl = 1.946 x 58.5 = 113.8g
Answer:
HCl(aq) + KOH(aq) --> KCl(aq) + H2O(l)
Explanation:
A neutralization reaction is the process between an acid and a base (there are a number of different ways to define acids and bases). An acid is a compound, which dissolves in water by releasing H+ ions, and a base is a compound, which dissolves in water by releasing OH- ions (by Arrhenius' definition, the simplest one). In this case, the neutralization reaction is the process between HCl (hydrochloric acid) - an acid, and KOH (potassium hydroxide) - a base.
The answer is 3). This is because elements are the simplest form of a substance, and cannot be broken down any further. Compounds on the other hand are much more complex than elements and can be broken down INTO elements.
For example, Na, sodium, is an element and cannot be broken down further. H2O, water, is a compound and can be broken down into Hydrogen and Oxygen.
<u><em>In metallic bonding, the valence electrons are free to move throughout the metal structure. Metallic bonding is the electrostatic attraction between the metal atoms or ions and the delocalized electrons. This is why atoms or layers are allowed to slide past each other, resulting in the characteristic properties of malleability and ductility.</em></u>
Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.