For getting the result of this problem, the knowledge of periodic table is very important. From the periodic table we come to know that. The knowledge of atomic mass of magnesium is also required to solve the problem.
1 mole of magnesium = 24.3 gm
88.1 moles of magnesium = (24.3 * 88.1) gms
= 2140.83 gms
So 2140.83 grams are there in 88.1 moles of magnesium.
Answer:
d, 40 dm3.
Explanation:
According to Avogadro's law, the mole ratio of chemicals in a reaction is equal to the ratio of volumes of chemicals reacted (for gas).
From the equation, the mole ratio of N2 : H2 : NH3 = 1 : 3 : 2, meaning 1 mole of N2 reacts completely with 3 moles of H2 to give 2 moles of NH3, the ratio of volume required is also equal to 1 : 3 : 2.
Considering both N2 and H2 have 30dm3 of volume, but 1 mole of N2 reacts completely with 3 moles of H2, so we can see H2 is limiting while N2 is in excess. Using the ratio, we can deduce that 10dm3 equals to 1 in ratio (because 3 moles ratio = 30dm3).
With that being said, all H2 has reacted, meaning there's no volume of H2 left. 2 moles of NH3 is produced, meaning the volume of NH3 produced = 10 x 2 = 20 dm3. (using the ratio again)
1 mole of N2 has reacted, meaning from the 30dm3, only 10 dm3 has reacted. This also indicate that 20 dm3 of N2 has not been reacted.
So at the end, the mixture contains 20dm3 of NH3, and 20 dm3 of unreacted N2. Hence, the answer is d, 40 dm3.
Answer:
Negligible
Explanation:
According to the kinetic theory of gases, the degree of intermolecular interaction between gases is minimal and gas molecules tend to spread out and fill up the volume of the container.
If the attraction between gas molecules increases, then the volume of the gas decreases accordingly. This is because, gas molecules become highly attracted to each other.
This intermolecular attractive force may be so strong, such that the actual volume of the gas become negligible compared to the volume of the container.
8,766 hours is your answer :)
Explanation:
Tollens' reagent is prepared by using two-step process : -
Step 1:
Silver oxide is formed by mixing aqueous silver nitrate with base like sodium hydroxide. The reaction is shown below as:

Step 2
Ammonia solution is drop-wise added until all the silver oxide dissolves to form the reagent. The reaction is shown below as:
