Answer:
20 photos
Step-by-step explanation:
4 photos per page, 5 pages. 4 x 5 is 20.
Answer:
x = 1
Step-by-step explanation:
-2x + y = 4
y = 2x + 4
2x + 3y = 20
2x + 3(2x + 4) = 20
2x + 6x + 12 = 20
8x + 12 = 20
8x = 8
x = 1
Answer:
80 tickets
Step-by-step explanation:
Given the profit, y, modeled by the equation, y = x^2 – 40x – 3,200, where x is the number of tickets sold, we are to find the total number of tickets, x, that need to be sold for the drama club to break even. To do that we will simply substitute y = 0 into the given the equation and calculate the value of x;
y = x^2 – 40x – 3,200,
0 = x^2 – 40x – 3,200,
x^2 – 40x – 3,200 = 0
x^2 – 80x + 40x – 3,200 = 0
x(x-80)+40(x-80) = 0
(x+40)(x-80) = 0
x = -40 and x = 80
x cannot be negative
Hence the total number of tickets, x, that need to be sold for the drama club to break even is 80 tickets
Answer:
a) Null and alternative hypothesis:

b) A Type I error is made when a true null hypothesis is rejected. In this case, it would mean a conclusion that the proportion is significantly bigger than 10%, when in fact it is not.
c) The consequences would be that they would be more optimistic than they should about the result of the investment, expecting a proportion of students that is bigger than the true population proportion.
d) A Type II error is made when a false null hypothesis is failed to be rejected. This would mean that, although the proportion is significantly bigger than 10%, there is no enough evidence and it is concluded erroneously that the proportion is not significantly bigger than 10%
e) The consequences would be that the investment may not be made, even when the results would have been more positive than expected from the conclusion of the hypothesis test.
Step-by-step explanation:
a) The hypothesis should be carried to test if the proportion of students that would eat there at least once a week is significantly higher than 10%.
Then, the alternative or spectulative hypothesis will state this claim: that the population proportion is significantly bigger than 10%.
On the contrary, the null hypothesis will state that this proportion is not significantly higher than 10%.
This can be written as:

If we take 1200 as the 100%, how much percentage is 700 of it?
well

so, (175/3)% or roughly 58.3%
now, how much is (175/3)% of 15000 ?
well, if we take 15000 as the 100%
then