Answer:
Explanation:
So, the formula for the compound should be:

Now we assume that we have 1 mol of substance, so we can make calculations to know the molar mass of element X, as follows:

So we have that 6 moles weight 212.7g, and we can make a rule of three to know the weight of compound X:

As we used 1 mol, we know that the molar mass is 32.06g/mol
So the element has a molar mass of 32.06 g/mol and an oxidation state of +6, with this information, we can assure that the element X is sulfur, so the compound is 
The answer to this item is TRUE. This can be explained through the Graham's law. This law states that the rate at which gases diffuse is inversely proportional to the square root of their densities which is also related to their molecular masses.
Answer: mitochondria
Explanation:
it affects the cell because it produces the power of the cell, let me know if this helpes
First, we must know what happens in the precipitation reaction. This type of reaction is a double replacement reactions. It is consists of two reactant compounds which interchange cations and anions to form two products. One of the products is an insoluble solid called a precipitate. For the precipitation of CaCO₃, there are two consecutive reactions involved:
1. Slaking of quicklime, CaO
CaO + H₂O ⇒ Ca(OH)₂
2. Precipitation
Ca(OH)₂ + CO₂ ⇒ CaCO₃ + H₂O
The ions that make up the H₂O molecule are H⁺ and OH⁻. According to solubility rules, the cation (positively charged ion) is likely to be attracted to an anion (negatively charged ion). Together, they form an ionic bond. This type of bond is when there is a complete transfer of electrons between the two. The Ca²⁺ cation lacks 2 electrons, while the anion OH⁻ has an excess 1 electron. In order to be stable, 1 Ca²⁺ ion and 2 OH⁻ ions must combine.
Therefore, the answer is OH⁻ ion.