Answer:
A. stored energy
Explanation:
potential energy is stored energy.
kinetic energy is the energy of motion
<span>Chemical reaction: CH</span>₃COO⁻(aq) + H⁺(aq) ⇄ CH₃COOH(aq).
H⁺ is from HNO₃: HNO₃ → H⁺ + NO₃⁻.
<span>A buffer can
be defined as a substance that prevents the pH of a solution from changing by
either releasing or absorbing H</span>⁺ in a
solution.
Buffer is a solution
that can resist pH change upon the addition of an acidic or basic components
and it is able to neutralize small amounts of added acid or base, pH of
the solution is relatively stable.
Answer:
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Silver
Cadmium
Lanthanum
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
Mercury
Actinium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
Darmstadtium
Roentgenium
Copernicium
Explanation:
all of those are transition metals lol
Answer:
See explanation below.
Explanation:
In the equation ∆G = –nFE, E is the electromotive force ( cell potential ) in Volts.
Now in turn a Volt is defined as the potential difference that will impart one joule of energy per coulomb of charge that moves through two points.
V = J/C where J is Joules and C is coulombs of charge
Therefore in terms of units the equation will give us units of Joules:
[ mol] x [C/mol] x [J/C] = [J]
Answer is: [COCl₂] > [CO][Cl₂]
Chemical reaction: COCl₂(g) ⇄ CO(g) + Cl₂(g); Keq = 8.1 x 10⁻⁴.
Keq = [CO] · [Cl₂] / [COCl₂]; equilibrrium constant of chemical reaction.
[CO] · [Cl₂] / [COCl₂] = 0,00081.
Equilibrium product concentration is much more less than equilibrium concentration of reactant.