A calorimeter contains reactants and a substance to absorb the heat absorbed. The initial temperature (before the reaction) of the heat absorbent is measured and then the final temperature (after the reaction) is also measured. The absorbent's specific heat capacity and mass are also known. Given all of this data, the equation:
Q = mcΔT
To find the heat released.
Answer:
Element symbol Cu
Number of protons 29
Number of electrons 28
Explanation:
To get the element symbol, we need the name of the element. To correctly identify the name of the element, we need the proton number.
Now the mass number is 65 and the number of neutrons is 36. The number of protons is this the mass number minus the number of neutrons. This equals 65 - 36 = 29 protons.
The element with 29 protons is copper Cu.
Now to get the number of electrons, for an electrically neutral atom , the number of electrons equals the number of protons. But here, the atom is not electrically neutral anymore as it has now formed a univalent positive ion of +1.
To form a positive ion, you have to do so by losing electrons. The atom in question here has just lost one electron. Thus, our of the 29, it is left with only 28 electrons.
Nonmetals which are located in the second row form pi bonds
more easily than the elements situated in the third row and below. Actually there
are no compounds or molecules known that forms covalent bonds to the noble gas
Ne and Ar. Hence the other second row element which is Carbon, is the element that
forms
pi bonds most readily.
Answer:
<span>C</span>
Answer:
7.2L
Explanation:
The details of the solution are found in the answer. The balanced stoichiometric equation is first written and the volumes on the left and right hand sides dilligiently compared and calculations are made based on simple comparisons as show.
The reaction between methane gas and chlorine gas to form hydrogen chloride and carbon tetrachloride, all in their gaseous form can be expressed through the chemical reaction below.
CH₄ + 4Cl₂ --> 4HCl + CCl₄
Let us assume that all the involved gases behaves ideally such that each mole of the gas is equal to 22.4 L.
Through proper dimensional analysis, the volume of the produced hydrogen chloride is calculated,
V(HCl) = (1.69 mL CH₄)(1 L CH₄/ 1000 mL CH₄)(1 mol CH₄/22.4 L CH₄)(4 mols HCl/1 mol CH₄)(22.4 L HCl/1 mol HCl)(1000 mL/1 L)
V(HCl) = 6.76 mL
<em>ANSWER: 6.76 mL</em>