Answer:
1 mol
Explanation:
Using the general gas law equation as follows:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
According to the provided information in the question;
V = 22.4L
T = 273K
P = 1 atm
R = 0.0821 Latm/molK
n = ?
Using PV = nRT
n = PV/RT
n = (1 × 22.4) ÷ (0.0821 × 273)
n = 22.4 ÷ 22.4
n = 1mol
The atomic mass number does<span> not change because a </span>beta<span> particle has a much smaller </span>mass<span> than the </span>atom<span>. The </span>atomic number<span> goes up because a neutron has turned into an extra proton. </span>Beta decay<span> is fundamentally different from alpha </span>decay<span>. An alpha particle is made of two protons and two neutrons.</span>
The molality of a solute is equal to the moles of solute per kg of solvent. We are given the mole fraction of I₂ in CH₂Cl₂ is <em>X</em> = 0.115. If we can an arbitrary sample of 1 mole of solution, we will have:
0.115 mol I₂
1 - 0.115 = 0.885 mol CH₂Cl₂
We need moles of solute, which we have, and must convert our moles of solvent to kg:
0.885 mol x 84.93 g/mol = 75.2 g CH₂Cl₂ x 1 kg/1000g = 0.0752 kg CH₂Cl₂
We can now calculate the molality:
m = 0.115 mol I₂/0.0752 kg CH₂Cl₂
m = 1.53 mol I₂/kg CH₂Cl₂
The molality of the iodine solution is 1.53.