The first one is the answer
isotopes of an atom have different number of neutrons . the number of protons are not different in isotopes of an atom
Answer:
1. pH = 1.23.
2. 
Explanation:
Hello!
1. In this case, for the ionization of H2C2O4, we can write:

It means, that if it is forming a buffer solution with its conjugate base in the form of KHC2O4, we can compute the pH based on the Henderson-Hasselbach equation:
![pH=pKa+log(\frac{[base]}{[acid]} )](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%29)
Whereas the pKa is:

The concentration of the base is 0.347 M and the concentration of the acid is 0.347 M as well, as seen on the statement; thus, the pH is:

2. Now, since the addition of KOH directly consumes 0.070 moles of acid, we can compute the remaining moles as follows:

It means that the acid remains in excess yet more base is yielded due to the effect of the OH ions provided by the KOH; therefore, the undergone chemical reaction is:

Which is also shown in net ionic notation.
Best regards!
<span>In H2CO, C is bonded to H, H and O. Write down the valence electrons of each element.
2 H = 1x 2 = 2.
C= 4
O = 6
Total 12 </span>
Answer:
Q = 10.8 KJ
Explanation:
Given data:
Mass of Al= 100g
Initial temperature = 30°C
Final temperature = 150°C
Heat required = ?
Solution:
Specific heat of Al = 0.90 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 150°C - 30°C
ΔT = 120°C
Q = 100g×0.90 J/g.°C× 120°C
Q = 10800 J (10800j×1KJ/1000 j)
Q = 10.8 KJ