Answer: 63.26%
Explanation:
If we let the abundance of the first isotope be x, then:

Which is equal to <u>63.26%</u>
Answer:
A: element B
B: element A
C: element B
D: element A
Explanation:
decrease in size leads increase in electronegativity because the smaller the size, the closer the shell is to the nucleus. Also, atomic radius decreases to the right and up on the periodic table. Atomic radius increases to the left and down a period. I hope this helps!
Answer:
20.1 g
Explanation:
The solubility indicates how much of the solute the solvent can dissolve. A solution is saturated when the solvent dissolved the maximum that it can do, so, if more solute is added, it will precipitate. The solubility varies with the temperature. Generally, it increases when the temperature increases.
So, if the solubility is 40.3 g/L, and the volume is 500 mL = 0.5 L, the mass of the solute is:
40.3 g/L = m/V
40.3 g/L = m/0.5L
m = 40.3 g/L * 0.5L
m = 20.1 g
Part 1)
Cu- <span>[Ar] 3d¹⁰4s¹ </span><span>atomic number: 29
</span>
<span>O- [He] 2s2 2p<span>4 atomic number:8
</span></span>La- <span>[Xe] 5d¹ 6s² </span><span>atomic number:57
Y- </span><span>[Kr] 4d¹5s² </span><span>atomic number:39
Ba- </span><span>[Xe] 6s² </span><span>atomic number:56
Tl- </span><span>[Xe] 4f¹⁴ 5d¹⁰ 6s² 6p¹ </span><span>atomic number:81
Bi- </span> <span>[Xe] 4f¹⁴ 5d¹⁰ 6s² 6p³ </span>atomic number:83
Part 2)
You are able to this by consulting the periodic table and following this steps:
-Find your atom's atomic number;
<span>-Determine the charge of the atom (these were all uncharged)
</span><span>-Memorize the order of orbitals (s, d, p, d.. and how many electrons they can fit)
</span>-<span>Fill in the orbitals according to the number of electrons in the atom
- </span><span>for long electron configurations, abbreviate with the noble gases</span>
Answer : The value of work done by an ideal gas is, 37.9 J
Explanation :
Formula used :
Expansion work = External pressure of gas × Volume of gas
Expansion work = 1.50 atm × 0.25 L
Expansion work = 0.375 L.atm
Conversion used : (1 L.atm = 101.3 J)
Expansion work = 0.375 × 101.3 = 37.9 J
Therefore, the value of work done by an ideal gas is, 37.9 J