The term sensitivity in Analytical Chemistry is "the slope of the calibration curve or a function of analyte concentration or amount".
<u>Answer:</u> Option B
<u>Explanation:</u>
In a sample, the little amounts of substances can be accurately evaluated by a method is termed as "Analytical sensitivity". This detect a target analyte like an antibody or antigen, process is considered as potential of a test to and generally demonstrated as the analyte's minimum detectable concentration.
The acceptable diagnostic sensitivity is not guaranteed by high analytical sensitivity. The percentage of individuals who have a given disarray who are identified by the method as positive for the disarray is known as "Diagnostic sensitivity".
Answer:
A.
Explanation:
the gradual movement of the continents across the earth's surface through geological time.
Answer:
250000 μL
Explanation:
If 1 L = 1000 mL
Then X L = 250 mL
X = (1 × 250) / 1000 = 0.25 L
Now we can calculate the number of microliters (μL) in 0.25 L:
if 1 μL = 10⁻⁶ L
then X μL = 0.25 L
X = (1 × 0.25) / 10⁻⁶ =250000 μL
The scale of most metal characteristics goes from the bottom left-hand corner.
The least metallic is the top right-hand.
So then that means that
Calcium-YES, second column
Germanium-No, to far, in the middle
Arsenic-Non-metal,
Bromine, same for this
Calcium
4 moles of NaCl is produced from 2 moles of Na₂CrO₄.
<u>Explanation:</u>
Given reaction is
PbCl₂(aq) + Na₂CrO₄(aq)→ PbCrO₄(s) + 2 NaCl (aq)
It is the balanced equation which means that on both sides of the equation, number of atoms of each element are equal.
From the above balanced equation it says that molar ratio of Na₂CrO₄ to NaCl is 1 : 2.
That is 1 mole of Na₂CrO₄ produces 2 moles of NaCl, so the molar ratio is 1:2.
2 moles of Na₂CrO₄ produces 4 moles of NaCl.
So the molar ratio of Na₂CrO₄ to NaCl is 2: 4.