Answer:
Endothermic reaction chemical equation
Reactnt A + Reactant B + Heat (energy) ⇒ Products
Exothermic reaction chemical equation
Reactnt A + Reactant B ⇒ Products + Heat (energy)
Explanation:
Endothermic Reaction
An endothermic reaction is a reaction that reaction that requires heat before it would take place resulting in the absorption of heat from the surrounding that can be sensed by the coolness of the reacting system
An example of an endothermic reaction is a chemical cold pack that becomes cold when the chemical and water inside it reacts
Exothermic Reaction
An exothermic reaction is one that rekeases energy to the surroundings when it takes place. This is as a result of the fact that the combined heat energy of the reactants is more than the chemical heat energy of the products. An example of an exothermic reaction is a burning candle
The answer would be A) sand, it is not soluble in water
It will probably zip far from you and join itself to an adjacent molecule or atom. it gets to be distinctly radioactive when its core contains an excessive number of or an excessively couple of neutrons. Attempt to keep an indistinguishable number of neutrons and protons from you construct your iota. In the event that the awkwardness is excessively extraordinary, radioactive rot will happen.
<u>Answer:</u> The correct answer is Option A.
<u>Explanation:</u>
Mole ratio is defined as the ratio between the stoichiometric coefficients of the molecules present in the chemical reaction.
For the given balanced chemical equation:
![3Fe+4H_2O\rightarrow Fe_3O_4+4H_2](https://tex.z-dn.net/?f=3Fe%2B4H_2O%5Crightarrow%20Fe_3O_4%2B4H_2)
By Stoichiometry of the reaction:
3 moles of iron metal reacts with 4 moles of water to produce 1 mole of iron oxide and 4 moles of hydrogen gas.
The mole ratio of ![Fe_3O_4:Fe=1:3](https://tex.z-dn.net/?f=Fe_3O_4%3AFe%3D1%3A3)
Hence, the correct answer is Option A.
Answer:
will this help ?
Explanation:
(108Hs) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 265Hs in 1984. There are 12 known isotopes from 263Hs to 277Hs and 1–4 isomers. The most stable isotope of hassium cannot be determined based on existing data due to uncertainty that arises from the low number of measurements. The confidence interval of half-life of 269Hs corresponding to one standard deviation (the interval is ~68.3% likely to contain the actual value) is 16 ± 6 seconds, whereas that of 270Hs is 9 ± 4 seconds. It is also possible that 277mHs is more stable than both of these, with its half-life likely being 110 ± 70 seconds, but only one event of decay of this isotope has been registered as of 2016.[1][2].